1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
//! This module provides an implementation of a variant of (Turbo)[PLONK][plonk]
//! that is designed specifically for the polynomial commitment scheme described
//! in the [Halo][halo] paper.
//!
//! [halo]: https://eprint.iacr.org/2019/1021
//! [plonk]: https://eprint.iacr.org/2019/953
use blake2b_simd::Params as Blake2bParams;
use group::ff::{Field, FromUniformBytes, PrimeField};
use crate::arithmetic::CurveAffine;
use crate::helpers::{
polynomial_slice_byte_length, read_polynomial_vec, write_polynomial_slice, SerdeCurveAffine,
SerdeFormat, SerdePrimeField,
};
use crate::plonk::circuit::{ConstraintSystemBack, PinnedConstraintSystem};
use crate::poly::{
Coeff, EvaluationDomain, ExtendedLagrangeCoeff, LagrangeCoeff, PinnedEvaluationDomain,
Polynomial,
};
use crate::transcript::{ChallengeScalar, EncodedChallenge, Transcript};
pub(crate) use evaluation::Evaluator;
use std::io;
mod circuit;
mod error;
mod evaluation;
pub mod keygen;
mod lookup;
mod permutation;
pub mod prover;
mod shuffle;
mod vanishing;
pub mod verifier;
pub use error::*;
/// This is a verifying key which allows for the verification of proofs for a
/// particular circuit.
#[derive(Clone, Debug)]
pub struct VerifyingKey<C: CurveAffine> {
/// Evaluation domain
domain: EvaluationDomain<C::Scalar>,
/// Commitments to fixed columns
fixed_commitments: Vec<C>,
/// Permutation verifying key
permutation: permutation::VerifyingKey<C>,
/// Constraint system
cs: ConstraintSystemBack<C::Scalar>,
/// Cached maximum degree of `cs` (which doesn't change after construction).
cs_degree: usize,
/// The representative of this `VerifyingKey` in transcripts.
transcript_repr: C::Scalar,
}
// Current version of the VK
const VERSION: u8 = 0x04;
impl<C: SerdeCurveAffine> VerifyingKey<C>
where
C::Scalar: SerdePrimeField + FromUniformBytes<64>,
{
/// Writes a verifying key to a buffer.
///
/// Writes a curve element according to `format`:
/// - `Processed`: Writes a compressed curve element with coordinates in standard form.
/// Writes a field element in standard form, with endianness specified by the
/// `PrimeField` implementation.
/// - Otherwise: Writes an uncompressed curve element with coordinates in Montgomery form
/// Writes a field element into raw bytes in its internal Montgomery representation,
/// WITHOUT performing the expensive Montgomery reduction.
pub fn write<W: io::Write>(&self, writer: &mut W, format: SerdeFormat) -> io::Result<()> {
// Version byte that will be checked on read.
writer.write_all(&[VERSION])?;
let k = &self.domain.k();
assert!(*k <= C::Scalar::S);
// k value fits in 1 byte
writer.write_all(&[*k as u8])?;
writer.write_all(&(self.fixed_commitments.len() as u32).to_le_bytes())?;
for commitment in &self.fixed_commitments {
commitment.write(writer, format)?;
}
self.permutation.write(writer, format)?;
Ok(())
}
/// Reads a verification key from a buffer.
///
/// Reads a curve element from the buffer and parses it according to the `format`:
/// - `Processed`: Reads a compressed curve element and decompresses it.
/// Reads a field element in standard form, with endianness specified by the
/// `PrimeField` implementation, and checks that the element is less than the modulus.
/// - `RawBytes`: Reads an uncompressed curve element with coordinates in Montgomery form.
/// Checks that field elements are less than modulus, and then checks that the point is on the curve.
/// - `RawBytesUnchecked`: Reads an uncompressed curve element with coordinates in Montgomery form;
/// does not perform any checks
pub fn read<R: io::Read>(
reader: &mut R,
format: SerdeFormat,
cs: ConstraintSystemBack<C::Scalar>,
) -> io::Result<Self> {
let mut version_byte = [0u8; 1];
reader.read_exact(&mut version_byte)?;
if VERSION != version_byte[0] {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"unexpected version byte",
));
}
let mut k = [0u8; 1];
reader.read_exact(&mut k)?;
let k = u8::from_le_bytes(k);
if k as u32 > C::Scalar::S {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
format!(
"circuit size value (k): {} exceeds maximum: {}",
k,
C::Scalar::S
),
));
}
let domain = keygen::create_domain::<C>(&cs, k as u32);
let mut num_fixed_columns = [0u8; 4];
reader.read_exact(&mut num_fixed_columns)?;
let num_fixed_columns = u32::from_le_bytes(num_fixed_columns);
let fixed_commitments: Vec<_> = (0..num_fixed_columns)
.map(|_| C::read(reader, format))
.collect::<Result<_, _>>()?;
let permutation = permutation::VerifyingKey::read(reader, &cs.permutation, format)?;
Ok(Self::from_parts(domain, fixed_commitments, permutation, cs))
}
/// Writes a verifying key to a vector of bytes using [`Self::write`].
pub fn to_bytes(&self, format: SerdeFormat) -> Vec<u8> {
let mut bytes = Vec::<u8>::with_capacity(self.bytes_length(format));
Self::write(self, &mut bytes, format).expect("Writing to vector should not fail");
bytes
}
/// Reads a verification key from a slice of bytes using [`Self::read`].
pub fn from_bytes(
mut bytes: &[u8],
format: SerdeFormat,
cs: ConstraintSystemBack<C::Scalar>,
) -> io::Result<Self> {
Self::read(&mut bytes, format, cs)
}
}
impl<C: CurveAffine> VerifyingKey<C> {
fn bytes_length(&self, format: SerdeFormat) -> usize
where
C: SerdeCurveAffine,
{
6 // bytes used for encoding VERSION(u8), "domain.k"(u8) & num_fixed_columns(u32)
+ (self.fixed_commitments.len() * C::byte_length(format))
+ self.permutation.bytes_length(format)
}
fn from_parts(
domain: EvaluationDomain<C::Scalar>,
fixed_commitments: Vec<C>,
permutation: permutation::VerifyingKey<C>,
cs: ConstraintSystemBack<C::Scalar>,
) -> Self
where
C::ScalarExt: FromUniformBytes<64>,
{
// Compute cached values.
let cs_degree = cs.degree();
let mut vk = Self {
domain,
fixed_commitments,
permutation,
cs,
cs_degree,
// Temporary, this is not pinned.
transcript_repr: C::Scalar::ZERO,
};
let mut hasher = Blake2bParams::new()
.hash_length(64)
.personal(b"Halo2-Verify-Key")
.to_state();
let s = format!("{:?}", vk.pinned());
hasher.update(&(s.len() as u64).to_le_bytes());
hasher.update(s.as_bytes());
// Hash in final Blake2bState
vk.transcript_repr = C::Scalar::from_uniform_bytes(hasher.finalize().as_array());
vk
}
/// Hashes a verification key into a transcript.
pub fn hash_into<E: EncodedChallenge<C>, T: Transcript<C, E>>(
&self,
transcript: &mut T,
) -> io::Result<()> {
transcript.common_scalar(self.transcript_repr)?;
Ok(())
}
/// Obtains a pinned representation of this verification key that contains
/// the minimal information necessary to reconstruct the verification key.
pub fn pinned(&self) -> PinnedVerificationKey<'_, C> {
PinnedVerificationKey {
base_modulus: C::Base::MODULUS,
scalar_modulus: C::Scalar::MODULUS,
domain: self.domain.pinned(),
fixed_commitments: &self.fixed_commitments,
permutation: &self.permutation,
cs: self.cs.pinned(),
}
}
/// Returns commitments of fixed polynomials
pub fn fixed_commitments(&self) -> &Vec<C> {
&self.fixed_commitments
}
/// Returns `ConstraintSystem`
pub(crate) fn cs(&self) -> &ConstraintSystemBack<C::Scalar> {
&self.cs
}
/// Returns representative of this `VerifyingKey` in transcripts
pub fn transcript_repr(&self) -> C::Scalar {
self.transcript_repr
}
}
/// Minimal representation of a verification key that can be used to identify
/// its active contents.
#[allow(dead_code)]
#[derive(Debug)]
pub struct PinnedVerificationKey<'a, C: CurveAffine> {
base_modulus: &'static str,
scalar_modulus: &'static str,
domain: PinnedEvaluationDomain<'a, C::Scalar>,
cs: PinnedConstraintSystem<'a, C::Scalar>,
fixed_commitments: &'a Vec<C>,
permutation: &'a permutation::VerifyingKey<C>,
}
/// This is a proving key which allows for the creation of proofs for a
/// particular circuit.
#[derive(Clone, Debug)]
pub struct ProvingKey<C: CurveAffine> {
vk: VerifyingKey<C>,
l0: Polynomial<C::Scalar, ExtendedLagrangeCoeff>,
l_last: Polynomial<C::Scalar, ExtendedLagrangeCoeff>,
l_active_row: Polynomial<C::Scalar, ExtendedLagrangeCoeff>,
fixed_values: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
fixed_polys: Vec<Polynomial<C::Scalar, Coeff>>,
fixed_cosets: Vec<Polynomial<C::Scalar, ExtendedLagrangeCoeff>>,
permutation: permutation::ProvingKey<C>,
ev: Evaluator<C>,
}
impl<C: CurveAffine> ProvingKey<C>
where
C::Scalar: FromUniformBytes<64>,
{
/// Get the underlying [`VerifyingKey`].
pub fn get_vk(&self) -> &VerifyingKey<C> {
&self.vk
}
/// Gets the total number of bytes in the serialization of `self`
fn bytes_length(&self, format: SerdeFormat) -> usize
where
C: SerdeCurveAffine,
{
let scalar_len = C::Scalar::default().to_repr().as_ref().len();
self.vk.bytes_length(format)
+ 12 // bytes used for encoding the length(u32) of "l0", "l_last" & "l_active_row" polys
+ scalar_len * (self.l0.len() + self.l_last.len() + self.l_active_row.len())
+ polynomial_slice_byte_length(&self.fixed_values)
+ polynomial_slice_byte_length(&self.fixed_polys)
+ polynomial_slice_byte_length(&self.fixed_cosets)
+ self.permutation.bytes_length()
}
}
impl<C: SerdeCurveAffine> ProvingKey<C>
where
C::Scalar: SerdePrimeField + FromUniformBytes<64>,
{
/// Writes a proving key to a buffer.
///
/// Writes a curve element according to `format`:
/// - `Processed`: Writes a compressed curve element with coordinates in standard form.
/// Writes a field element in standard form, with endianness specified by the
/// `PrimeField` implementation.
/// - Otherwise: Writes an uncompressed curve element with coordinates in Montgomery form
/// Writes a field element into raw bytes in its internal Montgomery representation,
/// WITHOUT performing the expensive Montgomery reduction.
/// Does so by first writing the verifying key and then serializing the rest of the data (in the form of field polynomials)
pub fn write<W: io::Write>(&self, writer: &mut W, format: SerdeFormat) -> io::Result<()> {
self.vk.write(writer, format)?;
self.l0.write(writer, format)?;
self.l_last.write(writer, format)?;
self.l_active_row.write(writer, format)?;
write_polynomial_slice(&self.fixed_values, writer, format)?;
write_polynomial_slice(&self.fixed_polys, writer, format)?;
write_polynomial_slice(&self.fixed_cosets, writer, format)?;
self.permutation.write(writer, format)?;
Ok(())
}
/// Reads a proving key from a buffer.
/// Does so by reading verification key first, and then deserializing the rest of the file into the remaining proving key data.
///
/// Reads a curve element from the buffer and parses it according to the `format`:
/// - `Processed`: Reads a compressed curve element and decompresses it.
/// Reads a field element in standard form, with endianness specified by the
/// `PrimeField` implementation, and checks that the element is less than the modulus.
/// - `RawBytes`: Reads an uncompressed curve element with coordinates in Montgomery form.
/// Checks that field elements are less than modulus, and then checks that the point is on the curve.
/// - `RawBytesUnchecked`: Reads an uncompressed curve element with coordinates in Montgomery form;
/// does not perform any checks
pub fn read<R: io::Read>(
reader: &mut R,
format: SerdeFormat,
cs: ConstraintSystemBack<C::Scalar>,
) -> io::Result<Self> {
let vk = VerifyingKey::<C>::read::<R>(reader, format, cs)?;
let l0 = Polynomial::read(reader, format)?;
let l_last = Polynomial::read(reader, format)?;
let l_active_row = Polynomial::read(reader, format)?;
let fixed_values = read_polynomial_vec(reader, format)?;
let fixed_polys = read_polynomial_vec(reader, format)?;
let fixed_cosets = read_polynomial_vec(reader, format)?;
let permutation = permutation::ProvingKey::read(reader, format)?;
let ev = Evaluator::new(vk.cs());
Ok(Self {
vk,
l0,
l_last,
l_active_row,
fixed_values,
fixed_polys,
fixed_cosets,
permutation,
ev,
})
}
/// Writes a proving key to a vector of bytes using [`Self::write`].
pub fn to_bytes(&self, format: SerdeFormat) -> Vec<u8> {
let mut bytes = Vec::<u8>::with_capacity(self.bytes_length(format));
Self::write(self, &mut bytes, format).expect("Writing to vector should not fail");
bytes
}
/// Reads a proving key from a slice of bytes using [`Self::read`].
pub fn from_bytes(
mut bytes: &[u8],
format: SerdeFormat,
cs: ConstraintSystemBack<C::Scalar>,
) -> io::Result<Self> {
Self::read(&mut bytes, format, cs)
}
}
impl<C: CurveAffine> VerifyingKey<C> {
/// Get the underlying [`EvaluationDomain`].
pub fn get_domain(&self) -> &EvaluationDomain<C::Scalar> {
&self.domain
}
}
/// Verifier challenge value, used to keep lookup columns linearly independent
///
/// Ref: https://zcash.github.io/halo2/design/proving-system/circuit-commitments.html
#[derive(Clone, Copy, Debug)]
pub(crate) struct Theta;
pub(crate) type ChallengeTheta<F> = ChallengeScalar<F, Theta>;
/// Verifier challenge value, used to commit permutation polynomials
///
/// Ref: https://zcash.github.io/halo2/design/proving-system/permutation.html
#[derive(Clone, Copy, Debug)]
pub(crate) struct Beta;
pub(crate) type ChallengeBeta<F> = ChallengeScalar<F, Beta>;
/// Verifier challenge value, used to commit permutation polynomials
///
/// Ref: https://zcash.github.io/halo2/design/proving-system/permutation.html
#[derive(Clone, Copy, Debug)]
pub(crate) struct Gamma;
pub(crate) type ChallengeGamma<F> = ChallengeScalar<F, Gamma>;
/// Verifier challenge value, used to build quotient polynomial
///
/// Ref: https://zcash.github.io/halo2/design/proving-system/vanishing.html
#[derive(Clone, Copy, Debug)]
pub(crate) struct Y;
pub(crate) type ChallengeY<F> = ChallengeScalar<F, Y>;
/// Verifier challenge value, used for multipoint opening argument
///
/// Ref: https://zcash.github.io/halo2/design/proving-system/multipoint-opening.html
#[derive(Clone, Copy, Debug)]
pub(crate) struct X;
pub(crate) type ChallengeX<F> = ChallengeScalar<F, X>;