1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
use group::ff::Field;
use halo2_middleware::circuit::{Any, ChallengeMid, ColumnMid, Gate};
use halo2_middleware::expression::{Expression, Variable};
use halo2_middleware::poly::Rotation;
use halo2_middleware::{lookup, permutation::ArgumentMid, shuffle};
/// Represent the index, column and rotation of a query, for backwards compatibility
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct QueryBack {
/// Query index
pub(crate) index: usize,
/// Column
pub(crate) column: ColumnMid,
/// Rotation of this query
pub(crate) rotation: Rotation,
}
/// Represent the `Query` and `Challenge`, for backwards compatibility
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum VarBack {
/// This is a generic column query
Query(QueryBack),
/// This is a challenge
Challenge(ChallengeMid),
}
impl std::fmt::Display for VarBack {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self)
}
}
impl Variable for VarBack {
fn degree(&self) -> usize {
match self {
VarBack::Query(_) => 1,
VarBack::Challenge(_) => 0,
}
}
fn complexity(&self) -> usize {
match self {
VarBack::Query(_) => 1,
VarBack::Challenge(_) => 0,
}
}
fn write_identifier<W: std::io::Write>(&self, writer: &mut W) -> std::io::Result<()> {
write!(writer, "{}", self)
}
}
pub(crate) type ExpressionBack<F> = Expression<F, VarBack>;
pub(crate) type GateBack<F> = Gate<F, VarBack>;
pub(crate) type LookupArgumentBack<F> = lookup::Argument<F, VarBack>;
pub(crate) type ShuffleArgumentBack<F> = shuffle::Argument<F, VarBack>;
pub(crate) type PermutationArgumentBack = ArgumentMid;
/// This is a description of the circuit environment, such as the gate, column and permutation
/// arrangements. This type is internal to the backend and will appear in the verifying key.
#[derive(Debug, Clone)]
pub struct ConstraintSystemBack<F: Field> {
pub(crate) num_fixed_columns: usize,
pub(crate) num_advice_columns: usize,
pub(crate) num_instance_columns: usize,
pub(crate) num_challenges: usize,
/// Contains the index of each advice column that is left unblinded.
pub(crate) unblinded_advice_columns: Vec<usize>,
/// Contains the phase for each advice column. Should have same length as num_advice_columns.
pub(crate) advice_column_phase: Vec<u8>,
/// Contains the phase for each challenge. Should have same length as num_challenges.
pub(crate) challenge_phase: Vec<u8>,
pub(crate) gates: Vec<GateBack<F>>,
pub(crate) advice_queries: Vec<(ColumnMid, Rotation)>,
// Contains an integer for each advice column
// identifying how many distinct queries it has
// so far; should be same length as num_advice_columns.
pub(crate) num_advice_queries: Vec<usize>,
pub(crate) instance_queries: Vec<(ColumnMid, Rotation)>,
pub(crate) fixed_queries: Vec<(ColumnMid, Rotation)>,
// Permutation argument for performing equality constraints
pub(crate) permutation: PermutationArgumentBack,
// Vector of lookup arguments, where each corresponds to a sequence of
// input expressions and a sequence of table expressions involved in the lookup.
pub(crate) lookups: Vec<LookupArgumentBack<F>>,
// Vector of shuffle arguments, where each corresponds to a sequence of
// input expressions and a sequence of shuffle expressions involved in the shuffle.
pub(crate) shuffles: Vec<ShuffleArgumentBack<F>>,
// The minimum degree required by the circuit, which can be set to a
// larger amount than actually needed. This can be used, for example, to
// force the permutation argument to involve more columns in the same set.
pub(crate) minimum_degree: Option<usize>,
}
impl<F: Field> ConstraintSystemBack<F> {
/// Compute the degree of the constraint system (the maximum degree of all
/// constraints).
pub(crate) fn degree(&self) -> usize {
// The permutation argument will serve alongside the gates, so must be
// accounted for.
let mut degree = permutation_argument_required_degree();
// The lookup argument also serves alongside the gates and must be accounted
// for.
degree = std::cmp::max(
degree,
self.lookups
.iter()
.map(|l| lookup_argument_required_degree(l))
.max()
.unwrap_or(1),
);
// The lookup argument also serves alongside the gates and must be accounted
// for.
degree = std::cmp::max(
degree,
self.shuffles
.iter()
.map(|l| shuffle_argument_required_degree(l))
.max()
.unwrap_or(1),
);
// Account for each gate to ensure our quotient polynomial is the
// correct degree and that our extended domain is the right size.
degree = std::cmp::max(
degree,
self.gates
.iter()
.map(|gate| gate.poly.degree())
.max()
.unwrap_or(0),
);
std::cmp::max(degree, self.minimum_degree.unwrap_or(1))
}
/// Compute the number of blinding factors necessary to perfectly blind
/// each of the prover's witness polynomials.
pub(crate) fn blinding_factors(&self) -> usize {
// All of the prover's advice columns are evaluated at no more than
let factors = *self.num_advice_queries.iter().max().unwrap_or(&1);
// distinct points during gate checks.
// - The permutation argument witness polynomials are evaluated at most 3 times.
// - Each lookup argument has independent witness polynomials, and they are
// evaluated at most 2 times.
let factors = std::cmp::max(3, factors);
// Each polynomial is evaluated at most an additional time during
// multiopen (at x_3 to produce q_evals):
let factors = factors + 1;
// h(x) is derived by the other evaluations so it does not reveal
// anything; in fact it does not even appear in the proof.
// h(x_3) is also not revealed; the verifier only learns a single
// evaluation of a polynomial in x_1 which has h(x_3) and another random
// polynomial evaluated at x_3 as coefficients -- this random polynomial
// is "random_poly" in the vanishing argument.
// Add an additional blinding factor as a slight defense against
// off-by-one errors.
factors + 1
}
/// Returns the minimum necessary rows that need to exist in order to
/// account for e.g. blinding factors.
pub(crate) fn minimum_rows(&self) -> usize {
self.blinding_factors() // m blinding factors
+ 1 // for l_{-(m + 1)} (l_last)
+ 1 // for l_0 (just for extra breathing room for the permutation
// argument, to essentially force a separation in the
// permutation polynomial between the roles of l_last, l_0
// and the interstitial values.)
+ 1 // for at least one row
}
pub(crate) fn get_any_query_index(&self, column: ColumnMid, at: Rotation) -> usize {
let queries = match column.column_type {
Any::Advice => &self.advice_queries,
Any::Fixed => &self.fixed_queries,
Any::Instance => &self.instance_queries,
};
for (index, instance_query) in queries.iter().enumerate() {
if instance_query == &(column, at) {
return index;
}
}
panic!("get_any_query_index called for non-existent query");
}
/// Returns the list of phases
pub(crate) fn phases(&self) -> impl Iterator<Item = u8> {
let max_phase = self
.advice_column_phase
.iter()
.max()
.copied()
.unwrap_or_default();
0..=max_phase
}
/// Obtain a pinned version of this constraint system; a structure with the
/// minimal parameters needed to determine the rest of the constraint
/// system.
pub(crate) fn pinned(&self) -> PinnedConstraintSystem<'_, F> {
PinnedConstraintSystem {
num_fixed_columns: &self.num_fixed_columns,
num_advice_columns: &self.num_advice_columns,
num_instance_columns: &self.num_instance_columns,
num_challenges: &self.num_challenges,
advice_column_phase: &self.advice_column_phase,
challenge_phase: &self.challenge_phase,
gates: PinnedGates(&self.gates),
fixed_queries: &self.fixed_queries,
advice_queries: &self.advice_queries,
instance_queries: &self.instance_queries,
permutation: &self.permutation,
lookups: &self.lookups,
shuffles: &self.shuffles,
minimum_degree: &self.minimum_degree,
}
}
}
/// A minimum version of `Gates`, which contains the constraint polynomial identities used in circuit.
struct PinnedGates<'a, F: Field>(&'a Vec<GateBack<F>>);
impl<'a, F: Field> std::fmt::Debug for PinnedGates<'a, F> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
f.debug_list()
.entries(self.0.iter().map(|gate| &gate.poly))
.finish()
}
}
/// Represents the minimal parameters that determine a `ConstraintSystem`.
#[allow(dead_code)]
#[derive(Debug)]
pub(crate) struct PinnedConstraintSystem<'a, F: Field> {
num_fixed_columns: &'a usize,
num_advice_columns: &'a usize,
num_instance_columns: &'a usize,
num_challenges: &'a usize,
advice_column_phase: &'a Vec<u8>,
challenge_phase: &'a Vec<u8>,
gates: PinnedGates<'a, F>,
advice_queries: &'a Vec<(ColumnMid, Rotation)>,
instance_queries: &'a Vec<(ColumnMid, Rotation)>,
fixed_queries: &'a Vec<(ColumnMid, Rotation)>,
permutation: &'a PermutationArgumentBack,
lookups: &'a Vec<LookupArgumentBack<F>>,
shuffles: &'a Vec<ShuffleArgumentBack<F>>,
minimum_degree: &'a Option<usize>,
}
// Cost functions: arguments required degree
/// Returns the minimum circuit degree required by the permutation argument.
/// The argument may use larger degree gates depending on the actual
/// circuit's degree and how many columns are involved in the permutation.
fn permutation_argument_required_degree() -> usize {
// degree 2:
// l_0(X) * (1 - z(X)) = 0
//
// We will fit as many polynomials p_i(X) as possible
// into the required degree of the circuit, so the
// following will not affect the required degree of
// this middleware.
//
// (1 - (l_last(X) + l_blind(X))) * (
// z(\omega X) \prod (p(X) + \beta s_i(X) + \gamma)
// - z(X) \prod (p(X) + \delta^i \beta X + \gamma)
// )
//
// On the first sets of columns, except the first
// set, we will do
//
// l_0(X) * (z(X) - z'(\omega^(last) X)) = 0
//
// where z'(X) is the permutation for the previous set
// of columns.
//
// On the final set of columns, we will do
//
// degree 3:
// l_last(X) * (z'(X)^2 - z'(X)) = 0
//
// which will allow the last value to be zero to
// ensure the argument is perfectly complete.
// There are constraints of degree 3 regardless of the
// number of columns involved.
3
}
fn lookup_argument_required_degree<F: Field, V: Variable>(arg: &lookup::Argument<F, V>) -> usize {
assert_eq!(arg.input_expressions.len(), arg.table_expressions.len());
// The first value in the permutation poly should be one.
// degree 2:
// l_0(X) * (1 - z(X)) = 0
//
// The "last" value in the permutation poly should be a boolean, for
// completeness and soundness.
// degree 3:
// l_last(X) * (z(X)^2 - z(X)) = 0
//
// Enable the permutation argument for only the rows involved.
// degree (2 + input_degree + table_degree) or 4, whichever is larger:
// (1 - (l_last(X) + l_blind(X))) * (
// z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
// - z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
// ) = 0
//
// The first two values of a' and s' should be the same.
// degree 2:
// l_0(X) * (a'(X) - s'(X)) = 0
//
// Either the two values are the same, or the previous
// value of a' is the same as the current value.
// degree 3:
// (1 - (l_last(X) + l_blind(X))) * (a′(X) − s′(X))⋅(a′(X) − a′(\omega^{-1} X)) = 0
let mut input_degree = 1;
for expr in arg.input_expressions.iter() {
input_degree = std::cmp::max(input_degree, expr.degree());
}
let mut table_degree = 1;
for expr in arg.table_expressions.iter() {
table_degree = std::cmp::max(table_degree, expr.degree());
}
// In practice because input_degree and table_degree are initialized to
// one, the latter half of this max() invocation is at least 4 always,
// rendering this call pointless except to be explicit in case we change
// the initialization of input_degree/table_degree in the future.
std::cmp::max(
// (1 - (l_last + l_blind)) z(\omega X) (a'(X) + \beta) (s'(X) + \gamma)
4,
// (1 - (l_last + l_blind)) z(X) (\theta^{m-1} a_0(X) + ... + a_{m-1}(X) + \beta) (\theta^{m-1} s_0(X) + ... + s_{m-1}(X) + \gamma)
2 + input_degree + table_degree,
)
}
fn shuffle_argument_required_degree<F: Field, V: Variable>(arg: &shuffle::Argument<F, V>) -> usize {
assert_eq!(arg.input_expressions.len(), arg.shuffle_expressions.len());
let mut input_degree = 1;
for expr in arg.input_expressions.iter() {
input_degree = std::cmp::max(input_degree, expr.degree());
}
let mut shuffle_degree = 1;
for expr in arg.shuffle_expressions.iter() {
shuffle_degree = std::cmp::max(shuffle_degree, expr.degree());
}
// (1 - (l_last + l_blind)) (z(\omega X) (s(X) + \gamma) - z(X) (a(X) + \gamma))
std::cmp::max(2 + shuffle_degree, 2 + input_degree)
}
#[cfg(test)]
mod tests {
use super::ExpressionBack;
use halo2curves::bn256::Fr;
#[test]
fn expressionback_iter_sum() {
let exprs: Vec<ExpressionBack<Fr>> = vec![
ExpressionBack::Constant(1.into()),
ExpressionBack::Constant(2.into()),
ExpressionBack::Constant(3.into()),
];
let happened: ExpressionBack<Fr> = exprs.into_iter().sum();
let expected: ExpressionBack<Fr> = ExpressionBack::Sum(
Box::new(ExpressionBack::Sum(
Box::new(ExpressionBack::Constant(1.into())),
Box::new(ExpressionBack::Constant(2.into())),
)),
Box::new(ExpressionBack::Constant(3.into())),
);
assert_eq!(happened, expected);
}
#[test]
fn expressionback_iter_product() {
let exprs: Vec<ExpressionBack<Fr>> = vec![
ExpressionBack::Constant(1.into()),
ExpressionBack::Constant(2.into()),
ExpressionBack::Constant(3.into()),
];
let happened: ExpressionBack<Fr> = exprs.into_iter().product();
let expected: ExpressionBack<Fr> = ExpressionBack::Product(
Box::new(ExpressionBack::Product(
Box::new(ExpressionBack::Constant(1.into())),
Box::new(ExpressionBack::Constant(2.into())),
)),
Box::new(ExpressionBack::Constant(3.into())),
);
assert_eq!(happened, expected);
}
}