1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
use group::{
ff::{BatchInvert, Field},
Curve,
};
use halo2_middleware::{ff::PrimeField, zal::impls::PlonkEngine};
use halo2_middleware::{permutation::ArgumentMid, zal::traits::MsmAccel};
use rand_core::RngCore;
use std::iter::{self, ExactSizeIterator};
use crate::{
arithmetic::{eval_polynomial, parallelize, CurveAffine},
plonk::{self, permutation::ProvingKey, ChallengeBeta, ChallengeGamma, ChallengeX, Error},
poly::{
commitment::{Blind, Params},
Coeff, LagrangeCoeff, Polynomial, ProverQuery,
},
transcript::{EncodedChallenge, TranscriptWrite},
};
use halo2_middleware::circuit::Any;
use halo2_middleware::poly::Rotation;
/// Single permutation product polynomial, which has been **committed**.
///
/// This struct contains two fields:
/// - `permutation_product_poly`: A (coefficient-form) polynomial representing the permutation grand product.
/// - `permutation_product_blind`: A scalar value used for blinding, in the commitment of the `permutation_product_poly`.
///
/// It stores a single `Z_P` in [permutation argument specification](https://zcash.github.io/halo2/design/proving-system/permutation.html#argument-specification).
pub(crate) struct CommittedSet<C: CurveAffine> {
pub(crate) permutation_product_poly: Polynomial<C::Scalar, Coeff>,
}
/// Set of permutation product polynomials, which have been **committed**.
///
/// This struct is to contain all of the permutation product polynomials([`CommittedSet`]), from a single circuit.
///
/// It stores multiple `Z_P` in [permutation argument specification](https://zcash.github.io/halo2/design/proving-system/permutation.html#spanning-a-large-number-of-columns).
pub(crate) struct Committed<C: CurveAffine> {
pub(crate) sets: Vec<CommittedSet<C>>,
}
/// Set of permutation product polynomials, which have been **evaluated**.
///
/// This struct is, in essence, the same as [`Committed`].
///
/// It indicates that the permutation product polynomials([`Committed`]) have been evaluated in the evaluation domain, and converted to [`Evaluated`](see [`Committed::evaluate`]).
///
/// It also indicates that the permuted product polynomials([`Evaluated`]) can be **opened** (see [`Evaluated::open`]).
pub(crate) struct Evaluated<C: CurveAffine> {
constructed: Committed<C>,
}
#[allow(clippy::too_many_arguments)]
pub(in crate::plonk) fn permutation_commit<
C: CurveAffine,
P: Params<C>,
E: EncodedChallenge<C>,
R: RngCore,
T: TranscriptWrite<C, E>,
M: MsmAccel<C>,
>(
engine: &PlonkEngine<C, M>,
arg: &ArgumentMid,
params: &P,
pk: &plonk::ProvingKey<C>,
pkey: &ProvingKey<C>,
advice: &[Polynomial<C::Scalar, LagrangeCoeff>],
fixed: &[Polynomial<C::Scalar, LagrangeCoeff>],
instance: &[Polynomial<C::Scalar, LagrangeCoeff>],
beta: ChallengeBeta<C>,
gamma: ChallengeGamma<C>,
mut rng: R,
transcript: &mut T,
) -> Result<Committed<C>, Error> {
let domain = &pk.vk.domain;
// How many columns can be included in a single permutation polynomial?
// We need to multiply by z(X) and (1 - (l_last(X) + l_blind(X))). This
// will never underflow because of the requirement of at least a degree
// 3 circuit for the permutation argument.
assert!(pk.vk.cs_degree >= 3);
let chunk_len = pk.vk.cs_degree - 2;
let blinding_factors = pk.vk.cs.blinding_factors();
// Each column gets its own delta power.
let mut deltaomega = C::Scalar::ONE;
// Track the "last" value from the previous column set
let mut last_z = C::Scalar::ONE;
let mut sets = vec![];
for (columns, permutations) in arg
.columns
.chunks(chunk_len)
.zip(pkey.permutations.chunks(chunk_len))
{
// Goal is to compute the products of fractions
//
// (p_j(\omega^i) + \delta^j \omega^i \beta + \gamma) /
// (p_j(\omega^i) + \beta s_j(\omega^i) + \gamma)
//
// where p_j(X) is the jth column in this permutation,
// and i is the ith row of the column.
let mut modified_values = vec![C::Scalar::ONE; params.n() as usize];
// Iterate over each column of the permutation
for (&column, permuted_column_values) in columns.iter().zip(permutations.iter()) {
let values = match column.column_type {
Any::Advice => advice,
Any::Fixed => fixed,
Any::Instance => instance,
};
parallelize(&mut modified_values, |modified_values, start| {
for ((modified_values, value), permuted_value) in modified_values
.iter_mut()
.zip(values[column.index][start..].iter())
.zip(permuted_column_values[start..].iter())
{
*modified_values *= *beta * permuted_value + *gamma + value;
}
});
}
// Invert to obtain the denominator for the permutation product polynomial
modified_values.batch_invert();
// Iterate over each column again, this time finishing the computation
// of the entire fraction by computing the numerators
for &column in columns.iter() {
let omega = domain.get_omega();
let values = match column.column_type {
Any::Advice => advice,
Any::Fixed => fixed,
Any::Instance => instance,
};
parallelize(&mut modified_values, |modified_values, start| {
let mut deltaomega = deltaomega * omega.pow_vartime([start as u64, 0, 0, 0]);
for (modified_values, value) in modified_values
.iter_mut()
.zip(values[column.index][start..].iter())
{
// Multiply by p_j(\omega^i) + \delta^j \omega^i \beta
*modified_values *= deltaomega * *beta + *gamma + value;
deltaomega *= ω
}
});
deltaomega *= &<C::Scalar as PrimeField>::DELTA;
}
// The modified_values vector is a vector of products of fractions
// of the form
//
// (p_j(\omega^i) + \delta^j \omega^i \beta + \gamma) /
// (p_j(\omega^i) + \beta s_j(\omega^i) + \gamma)
//
// where i is the index into modified_values, for the jth column in
// the permutation
// Compute the evaluations of the permutation product polynomial
// over our domain, starting with z[0] = 1
let mut z = vec![last_z];
for row in 1..(params.n() as usize) {
let mut tmp = z[row - 1];
tmp *= &modified_values[row - 1];
z.push(tmp);
}
let mut z = domain.lagrange_from_vec(z);
// Set blinding factors
for z in &mut z[params.n() as usize - blinding_factors..] {
*z = C::Scalar::random(&mut rng);
}
// Set new last_z
last_z = z[params.n() as usize - (blinding_factors + 1)];
let blind = Blind(C::Scalar::random(&mut rng));
let permutation_product_commitment = params
.commit_lagrange(&engine.msm_backend, &z, blind)
.to_affine();
let permutation_product_poly = domain.lagrange_to_coeff(z);
// Hash the permutation product commitment
transcript.write_point(permutation_product_commitment)?;
sets.push(CommittedSet {
permutation_product_poly,
});
}
Ok(Committed { sets })
}
impl<C: CurveAffine> super::ProvingKey<C> {
pub(in crate::plonk) fn open(
&self,
x: ChallengeX<C>,
) -> impl Iterator<Item = ProverQuery<'_, C>> + Clone {
self.polys
.iter()
.map(move |poly| ProverQuery { point: *x, poly })
}
pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
&self,
x: ChallengeX<C>,
transcript: &mut T,
) -> Result<(), Error> {
// Hash permutation evals
for eval in self.polys.iter().map(|poly| eval_polynomial(poly, *x)) {
transcript.write_scalar(eval)?;
}
Ok(())
}
}
impl<C: CurveAffine> Committed<C> {
pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
self,
pk: &plonk::ProvingKey<C>,
x: ChallengeX<C>,
transcript: &mut T,
) -> Result<Evaluated<C>, Error> {
let domain = &pk.vk.domain;
let blinding_factors = pk.vk.cs.blinding_factors();
{
let mut sets = self.sets.iter();
while let Some(set) = sets.next() {
let permutation_product_eval = eval_polynomial(&set.permutation_product_poly, *x);
let permutation_product_next_eval = eval_polynomial(
&set.permutation_product_poly,
domain.rotate_omega(*x, Rotation::next()),
);
// Hash permutation product evals
for eval in iter::empty()
.chain(Some(&permutation_product_eval))
.chain(Some(&permutation_product_next_eval))
{
transcript.write_scalar(*eval)?;
}
// If we have any remaining sets to process, evaluate this set at omega^u
// so we can constrain the last value of its running product to equal the
// first value of the next set's running product, chaining them together.
if sets.len() > 0 {
let permutation_product_last_eval = eval_polynomial(
&set.permutation_product_poly,
domain.rotate_omega(*x, Rotation(-((blinding_factors + 1) as i32))),
);
transcript.write_scalar(permutation_product_last_eval)?;
}
}
}
Ok(Evaluated { constructed: self })
}
}
impl<C: CurveAffine> Evaluated<C> {
pub(in crate::plonk) fn open<'a>(
&'a self,
pk: &'a plonk::ProvingKey<C>,
x: ChallengeX<C>,
) -> impl Iterator<Item = ProverQuery<'a, C>> + Clone {
let blinding_factors = pk.vk.cs.blinding_factors();
let x_next = pk.vk.domain.rotate_omega(*x, Rotation::next());
let x_last = pk
.vk
.domain
.rotate_omega(*x, Rotation(-((blinding_factors + 1) as i32)));
iter::empty()
.chain(self.constructed.sets.iter().flat_map(move |set| {
iter::empty()
// Open permutation product commitments at x and \omega x
.chain(Some(ProverQuery {
point: *x,
poly: &set.permutation_product_poly,
}))
.chain(Some(ProverQuery {
point: x_next,
poly: &set.permutation_product_poly,
}))
}))
// Open it at \omega^{last} x for all but the last set. This rotation is only
// sensical for the first row, but we only use this rotation in a constraint
// that is gated on l_0.
.chain(
self.constructed
.sets
.iter()
.rev()
.skip(1)
.flat_map(move |set| {
Some(ProverQuery {
point: x_last,
poly: &set.permutation_product_poly,
})
}),
)
}
}