1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
use std::{collections::HashMap, iter};

use crate::plonk::Error;
use group::Curve;
use halo2_middleware::ff::Field;
use halo2_middleware::zal::{impls::PlonkEngine, traits::MsmAccel};
use rand_chacha::ChaCha20Rng;
use rand_core::{RngCore, SeedableRng};

use super::Argument;
use crate::{
    arithmetic::{eval_polynomial, parallelize, CurveAffine},
    multicore::current_num_threads,
    plonk::ChallengeX,
    poly::{
        commitment::{Blind, ParamsProver},
        Coeff, EvaluationDomain, ExtendedLagrangeCoeff, Polynomial, ProverQuery,
    },
    transcript::{EncodedChallenge, TranscriptWrite},
};

pub(in crate::plonk) struct Committed<C: CurveAffine> {
    random_poly: Polynomial<C::Scalar, Coeff>,
}

pub(in crate::plonk) struct Constructed<C: CurveAffine> {
    h_pieces: Vec<Polynomial<C::Scalar, Coeff>>,
    committed: Committed<C>,
}

pub(in crate::plonk) struct Evaluated<C: CurveAffine> {
    h_poly: Polynomial<C::Scalar, Coeff>,
    committed: Committed<C>,
}

impl<C: CurveAffine> Argument<C> {
    pub(in crate::plonk) fn commit<
        P: ParamsProver<C>,
        E: EncodedChallenge<C>,
        R: RngCore,
        T: TranscriptWrite<C, E>,
    >(
        engine: &impl MsmAccel<C>,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        mut rng: R,
        transcript: &mut T,
    ) -> Result<Committed<C>, Error> {
        // Sample a random polynomial of degree n - 1
        let n = 1usize << domain.k() as usize;
        let mut rand_vec = vec![C::Scalar::ZERO; n];

        let num_threads = current_num_threads();
        let chunk_size = n / num_threads;
        let thread_seeds = (0..)
            .step_by(chunk_size + 1)
            .take(n % num_threads)
            .chain(
                (chunk_size != 0)
                    .then(|| ((n % num_threads) * (chunk_size + 1)..).step_by(chunk_size))
                    .into_iter()
                    .flatten(),
            )
            .take(num_threads)
            .zip(iter::repeat_with(|| {
                let mut seed = [0u8; 32];
                rng.fill_bytes(&mut seed);
                ChaCha20Rng::from_seed(seed)
            }))
            .collect::<HashMap<_, _>>();

        parallelize(&mut rand_vec, |chunk, offset| {
            let mut rng = thread_seeds[&offset].clone();
            chunk
                .iter_mut()
                .for_each(|v| *v = C::Scalar::random(&mut rng));
        });

        let random_poly: Polynomial<C::Scalar, Coeff> = domain.coeff_from_vec(rand_vec);

        // Sample a random blinding factor
        let random_blind = Blind(C::Scalar::random(rng));

        // Commit
        let c = params
            .commit(engine, &random_poly, random_blind)
            .to_affine();
        transcript.write_point(c)?;

        Ok(Committed { random_poly })
    }
}

impl<C: CurveAffine> Committed<C> {
    pub(in crate::plonk) fn construct<
        P: ParamsProver<C>,
        E: EncodedChallenge<C>,
        R: RngCore,
        T: TranscriptWrite<C, E>,
        M: MsmAccel<C>,
    >(
        self,
        engine: &PlonkEngine<C, M>,
        params: &P,
        domain: &EvaluationDomain<C::Scalar>,
        h_poly: Polynomial<C::Scalar, ExtendedLagrangeCoeff>,
        mut rng: R,
        transcript: &mut T,
    ) -> Result<Constructed<C>, Error> {
        // Divide by t(X) = X^{params.n} - 1.
        let h_poly = domain.divide_by_vanishing_poly(h_poly);

        // Obtain final h(X) polynomial
        let mut h_poly = domain.extended_to_coeff(h_poly);

        // Truncate it to match the size of the quotient polynomial; the
        // evaluation domain might be slightly larger than necessary because
        // it always lies on a power-of-two boundary.
        h_poly.truncate(((1u64 << domain.k()) as usize) * domain.get_quotient_poly_degree());

        // Split h(X) up into pieces
        let h_pieces = h_poly
            .chunks_exact(params.n() as usize)
            .map(|v| domain.coeff_from_vec(v.to_vec()))
            .collect::<Vec<_>>();
        drop(h_poly);
        let h_blinds: Vec<_> = h_pieces
            .iter()
            .map(|_| Blind(C::Scalar::random(&mut rng)))
            .collect();

        // Compute commitments to each h(X) piece
        let h_commitments = {
            let h_commitments_projective: Vec<_> = h_pieces
                .iter()
                .zip(h_blinds.iter())
                .map(|(h_piece, blind)| params.commit(&engine.msm_backend, h_piece, *blind))
                .collect();
            let mut h_commitments = vec![C::identity(); h_commitments_projective.len()];
            C::Curve::batch_normalize(&h_commitments_projective, &mut h_commitments);
            h_commitments
        };

        // Hash each h(X) piece
        for c in h_commitments {
            transcript.write_point(c)?;
        }

        Ok(Constructed {
            h_pieces,
            committed: self,
        })
    }
}

impl<C: CurveAffine> Constructed<C> {
    pub(in crate::plonk) fn evaluate<E: EncodedChallenge<C>, T: TranscriptWrite<C, E>>(
        self,
        x: ChallengeX<C>,
        xn: C::Scalar,
        domain: &EvaluationDomain<C::Scalar>,
        transcript: &mut T,
    ) -> Result<Evaluated<C>, Error> {
        let h_poly = self
            .h_pieces
            .iter()
            .rev()
            .fold(domain.empty_coeff(), |acc, eval| acc * xn + eval);

        let random_eval = eval_polynomial(&self.committed.random_poly, *x);
        transcript.write_scalar(random_eval)?;

        Ok(Evaluated {
            h_poly,
            committed: self.committed,
        })
    }
}

impl<C: CurveAffine> Evaluated<C> {
    pub(in crate::plonk) fn open(
        &self,
        x: ChallengeX<C>,
    ) -> impl Iterator<Item = ProverQuery<'_, C>> + Clone {
        iter::empty()
            .chain(Some(ProverQuery {
                point: *x,
                poly: &self.h_poly,
            }))
            .chain(Some(ProverQuery {
                point: *x,
                poly: &self.committed.random_poly,
            }))
    }
}