1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
//! Contains utilities for performing polynomial arithmetic over an evaluation
//! domain that is of a suitable size for the application.

use crate::arithmetic::parallelize;

use super::{Coeff, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial};
use group::ff::{BatchInvert, Field};
use halo2_middleware::ff::WithSmallOrderMulGroup;
use halo2_middleware::poly::Rotation;
use halo2curves::fft::best_fft;

use std::marker::PhantomData;

/// This structure contains precomputed constants and other details needed for
/// performing operations on an evaluation domain of size $2^k$ and an extended
/// domain of size $2^{k} * j$ with $j \neq 0$.
#[derive(Clone, Debug)]
pub struct EvaluationDomain<F: Field> {
    n: u64,
    k: u32,
    extended_k: u32,
    omega: F,
    omega_inv: F,
    extended_omega: F,
    extended_omega_inv: F,
    g_coset: F,
    g_coset_inv: F,
    quotient_poly_degree: u64,
    ifft_divisor: F,
    extended_ifft_divisor: F,
    t_evaluations: Vec<F>,
    barycentric_weight: F,
}

impl<F: WithSmallOrderMulGroup<3>> EvaluationDomain<F> {
    /// This constructs a new evaluation domain object based on the provided
    /// values $j, k$.
    pub fn new(j: u32, k: u32) -> Self {
        // quotient_poly_degree * params.n - 1 is the degree of the quotient polynomial
        let quotient_poly_degree = (j - 1) as u64;

        // n = 2^k
        let n = 1u64 << k;

        // We need to work within an extended domain, not params.k but params.k + i
        // for some integer i such that 2^(params.k + i) is sufficiently large to
        // describe the quotient polynomial.
        let mut extended_k = k;
        while (1 << extended_k) < (n * quotient_poly_degree) {
            extended_k += 1;
        }

        // ensure extended_k <= S
        assert!(extended_k <= F::S);

        let mut extended_omega = F::ROOT_OF_UNITY;

        // Get extended_omega, the 2^{extended_k}'th root of unity
        // The loop computes extended_omega = omega^{2 ^ (S - extended_k)}
        // Notice that extended_omega ^ {2 ^ extended_k} = omega ^ {2^S} = 1.
        for _ in extended_k..F::S {
            extended_omega = extended_omega.square();
        }
        let extended_omega = extended_omega;
        let mut extended_omega_inv = extended_omega; // Inversion computed later

        // Get omega, the 2^{k}'th root of unity (i.e. n'th root of unity)
        // The loop computes omega = extended_omega ^ {2 ^ (extended_k - k)}
        //           = (omega^{2 ^ (S - extended_k)})  ^ {2 ^ (extended_k - k)}
        //           = omega ^ {2 ^ (S - k)}.
        // Notice that omega ^ {2^k} = omega ^ {2^S} = 1.
        let mut omega = extended_omega;
        for _ in k..extended_k {
            omega = omega.square();
        }
        let omega = omega;
        let mut omega_inv = omega; // Inversion computed later

        // We use zeta here because we know it generates a coset, and it's available
        // already.
        // The coset evaluation domain is:
        // zeta {1, extended_omega, extended_omega^2, ..., extended_omega^{(2^extended_k) - 1}}
        let g_coset = F::ZETA;
        let g_coset_inv = g_coset.square();

        let mut t_evaluations = Vec::with_capacity(1 << (extended_k - k));
        {
            // Compute the evaluations of t(X) = X^n - 1 in the coset evaluation domain.
            // We don't have to compute all of them, because it will repeat.
            let orig = F::ZETA.pow_vartime([n, 0, 0, 0]);
            let step = extended_omega.pow_vartime([n, 0, 0, 0]);
            let mut cur = orig;
            loop {
                t_evaluations.push(cur);
                cur *= &step;
                if cur == orig {
                    break;
                }
            }
            assert_eq!(t_evaluations.len(), 1 << (extended_k - k));

            // Subtract 1 from each to give us t_evaluations[i] = t(zeta * extended_omega^i)
            for coeff in &mut t_evaluations {
                *coeff -= &F::ONE;
            }

            // Invert, because we're dividing by this polynomial.
            // We invert in a batch, below.
        }

        let mut ifft_divisor = F::from(1 << k); // Inversion computed later
        let mut extended_ifft_divisor = F::from(1 << extended_k); // Inversion computed later

        // The barycentric weight of 1 over the evaluation domain
        // 1 / \prod_{i != 0} (1 - omega^i)
        let mut barycentric_weight = F::from(n); // Inversion computed later

        // Compute batch inversion
        t_evaluations
            .iter_mut()
            .chain(Some(&mut ifft_divisor))
            .chain(Some(&mut extended_ifft_divisor))
            .chain(Some(&mut barycentric_weight))
            .chain(Some(&mut extended_omega_inv))
            .chain(Some(&mut omega_inv))
            .batch_invert();

        EvaluationDomain {
            n,
            k,
            extended_k,
            omega,
            omega_inv,
            extended_omega,
            extended_omega_inv,
            g_coset,
            g_coset_inv,
            quotient_poly_degree,
            ifft_divisor,
            extended_ifft_divisor,
            t_evaluations,
            barycentric_weight,
        }
    }

    /// Obtains a polynomial in Lagrange form when given a vector of Lagrange
    /// coefficients of size `n`; panics if the provided vector is the wrong
    /// length.
    pub fn lagrange_from_vec(&self, values: Vec<F>) -> Polynomial<F, LagrangeCoeff> {
        assert_eq!(values.len(), self.n as usize);

        Polynomial {
            values,
            _marker: PhantomData,
        }
    }

    /// Obtains a polynomial in coefficient form when given a vector of
    /// coefficients of size `n`; panics if the provided vector is the wrong
    /// length.
    pub fn coeff_from_vec(&self, values: Vec<F>) -> Polynomial<F, Coeff> {
        assert_eq!(values.len(), self.n as usize);

        Polynomial {
            values,
            _marker: PhantomData,
        }
    }

    /// Returns an empty (zero) polynomial in the coefficient basis
    pub fn empty_coeff(&self) -> Polynomial<F, Coeff> {
        Polynomial {
            values: vec![F::ZERO; self.n as usize],
            _marker: PhantomData,
        }
    }

    /// Returns an empty (zero) polynomial in the Lagrange coefficient basis
    pub fn empty_lagrange(&self) -> Polynomial<F, LagrangeCoeff> {
        Polynomial {
            values: vec![F::ZERO; self.n as usize],
            _marker: PhantomData,
        }
    }

    /// Returns a constant polynomial in the Lagrange coefficient basis
    pub fn constant_lagrange(&self, scalar: F) -> Polynomial<F, LagrangeCoeff> {
        Polynomial {
            values: vec![scalar; self.n as usize],
            _marker: PhantomData,
        }
    }

    /// Returns an empty (zero) polynomial in the extended Lagrange coefficient
    /// basis
    pub fn empty_extended(&self) -> Polynomial<F, ExtendedLagrangeCoeff> {
        Polynomial {
            values: vec![F::ZERO; self.extended_len()],
            _marker: PhantomData,
        }
    }

    /// Returns a constant polynomial in the extended Lagrange coefficient
    /// basis
    pub fn constant_extended(&self, scalar: F) -> Polynomial<F, ExtendedLagrangeCoeff> {
        Polynomial {
            values: vec![scalar; self.extended_len()],
            _marker: PhantomData,
        }
    }

    /// This takes us from an n-length vector into the coefficient form.
    ///
    /// This function will panic if the provided vector is not the correct
    /// length.
    pub fn lagrange_to_coeff(&self, mut a: Polynomial<F, LagrangeCoeff>) -> Polynomial<F, Coeff> {
        assert_eq!(a.values.len(), 1 << self.k);

        // Perform inverse FFT to obtain the polynomial in coefficient form
        Self::ifft(&mut a.values, self.omega_inv, self.k, self.ifft_divisor);

        Polynomial {
            values: a.values,
            _marker: PhantomData,
        }
    }

    /// This takes us from an n-length coefficient vector into a coset of the extended
    /// evaluation domain, rotating by `rotation` if desired.
    pub fn coeff_to_extended(
        &self,
        mut a: Polynomial<F, Coeff>,
    ) -> Polynomial<F, ExtendedLagrangeCoeff> {
        assert_eq!(a.values.len(), 1 << self.k);

        self.distribute_powers_zeta(&mut a.values, true);
        a.values.resize(self.extended_len(), F::ZERO);
        best_fft(&mut a.values, self.extended_omega, self.extended_k);

        Polynomial {
            values: a.values,
            _marker: PhantomData,
        }
    }

    // Compute L_i(X) in the extended co-domain, where
    // L_i(X)is the ith Lagrange polynomial in the original domain,
    // H = {1, g, g^2, ..., g^(n-1)}.
    // We compute its represenation in the extended co-domain
    // zH = {z, z*w, z*w^2, ... , z*w^(n*k - 1)}, where k is the extension factor
    // of the domain, and z is the extended root such that w^k = g.
    // We assume z = F::ZETA, a cubic root the field. This simplifies the computation.
    //
    // The computation uses the fomula:
    // L_i(X) = g^i/n * (X^n -1)/(X-g^i)
    pub fn lagrange_extended(&self, idx: usize) -> Polynomial<F, ExtendedLagrangeCoeff> {
        let one = F::ONE;
        let zeta = <F as WithSmallOrderMulGroup<3>>::ZETA;

        let n: u64 = 1 << self.k();
        let g_i = self.omega.pow_vartime([idx as u64]);
        let mut lag_poly = vec![F::ZERO; self.extended_len()];

        let w = self.get_extended_omega();
        let wn = w.pow_vartime([n]);
        let zeta_n = match n % 3 {
            1 => zeta,
            2 => zeta * zeta,
            _ => one,
        };

        // Compute denominators. ( n * (w^j - g_i))
        let n = F::from(n);
        let n_g_i = n * g_i;
        parallelize(&mut lag_poly, |e, mut index| {
            let mut acc = n * zeta * w.pow_vartime([index as u64]);
            for e in e {
                *e = acc - n_g_i;
                acc *= w;
                index += 1;
            }
        });
        lag_poly.batch_invert();

        // Compute numerators.
        //  g_i * (zeta * w^i)^n = (g_i * zeta^n) * w^(i*n)
        // We use w^k = g and g^n = 1 to save multiplications.
        let k = 1 << (self.extended_k() - self.k());
        let mut wn_powers = vec![zeta_n * g_i; k];
        for i in 1..k {
            wn_powers[i] = wn_powers[i - 1] * wn
        }

        parallelize(&mut lag_poly, |e, mut index| {
            for e in e {
                *e *= wn_powers[index % k] - g_i;
                index += 1;
            }
        });

        Polynomial {
            values: lag_poly,
            _marker: std::marker::PhantomData,
        }
    }

    /// Rotate the extended domain polynomial over the original domain.
    pub fn rotate_extended(
        &self,
        poly: &Polynomial<F, ExtendedLagrangeCoeff>,
        rotation: Rotation,
    ) -> Polynomial<F, ExtendedLagrangeCoeff> {
        let new_rotation = ((1 << (self.extended_k - self.k)) * rotation.0.abs()) as usize;

        let mut poly = poly.clone();

        if rotation.0 >= 0 {
            poly.values.rotate_left(new_rotation);
        } else {
            poly.values.rotate_right(new_rotation);
        }

        poly
    }

    /// This takes us from the extended evaluation domain and gets us the
    /// quotient polynomial coefficients.
    ///
    /// This function will panic if the provided vector is not the correct
    /// length.
    pub fn extended_to_coeff(&self, mut a: Polynomial<F, ExtendedLagrangeCoeff>) -> Vec<F> {
        assert_eq!(a.values.len(), self.extended_len());

        // Inverse FFT
        Self::ifft(
            &mut a.values,
            self.extended_omega_inv,
            self.extended_k,
            self.extended_ifft_divisor,
        );

        // Distribute powers to move from coset; opposite from the
        // transformation we performed earlier.
        self.distribute_powers_zeta(&mut a.values, false);

        a.values
    }

    /// This divides the polynomial (in the extended domain) by the vanishing
    /// polynomial of the $2^k$ size domain.
    pub fn divide_by_vanishing_poly(
        &self,
        mut a: Polynomial<F, ExtendedLagrangeCoeff>,
    ) -> Polynomial<F, ExtendedLagrangeCoeff> {
        assert_eq!(a.values.len(), self.extended_len());

        // Divide to obtain the quotient polynomial in the coset evaluation
        // domain.
        parallelize(&mut a.values, |h, mut index| {
            for h in h {
                *h *= &self.t_evaluations[index % self.t_evaluations.len()];
                index += 1;
            }
        });

        Polynomial {
            values: a.values,
            _marker: PhantomData,
        }
    }

    /// Given a slice of group elements `[a_0, a_1, a_2, ...]`, this returns
    /// `[a_0, [zeta]a_1, [zeta^2]a_2, a_3, [zeta]a_4, [zeta^2]a_5, a_6, ...]`,
    /// where zeta is a cube root of unity in the multiplicative subgroup with
    /// order (p - 1), i.e. zeta^3 = 1.
    ///
    /// `into_coset` should be set to `true` when moving into the coset,
    /// and `false` when moving out. This toggles the choice of `zeta`.
    fn distribute_powers_zeta(&self, a: &mut [F], into_coset: bool) {
        let coset_powers = if into_coset {
            [self.g_coset, self.g_coset_inv]
        } else {
            [self.g_coset_inv, self.g_coset]
        };
        parallelize(a, |a, mut index| {
            for a in a {
                // Distribute powers to move into/from coset
                let i = index % (coset_powers.len() + 1);
                if i != 0 {
                    *a *= &coset_powers[i - 1];
                }
                index += 1;
            }
        });
    }

    fn ifft(a: &mut [F], omega_inv: F, log_n: u32, divisor: F) {
        best_fft(a, omega_inv, log_n);
        parallelize(a, |a, _| {
            for a in a {
                // Finish iFFT
                *a *= &divisor;
            }
        });
    }

    /// Get the size of the domain
    pub fn k(&self) -> u32 {
        self.k
    }

    /// Get the size of the extended domain
    pub fn extended_k(&self) -> u32 {
        self.extended_k
    }

    /// Get the size of the extended domain
    pub fn extended_len(&self) -> usize {
        1 << self.extended_k
    }

    /// Get $\omega$, the generator of the $2^k$ order multiplicative subgroup.
    pub fn get_omega(&self) -> F {
        self.omega
    }

    /// Get $\omega^{-1}$, the inverse of the generator of the $2^k$ order
    /// multiplicative subgroup.
    pub fn get_omega_inv(&self) -> F {
        self.omega_inv
    }

    /// Get the generator of the extended domain's multiplicative subgroup.
    pub fn get_extended_omega(&self) -> F {
        self.extended_omega
    }

    /// Multiplies a value by some power of $\omega$, essentially rotating over
    /// the domain.
    pub fn rotate_omega(&self, value: F, rotation: Rotation) -> F {
        let mut point = value;
        if rotation.0 >= 0 {
            point *= &self.get_omega().pow_vartime([rotation.0 as u64]);
        } else {
            point *= &self
                .get_omega_inv()
                .pow_vartime([(rotation.0 as i64).unsigned_abs()]);
        }
        point
    }

    /// Computes evaluations (at the point `x`, where `xn = x^n`) of Lagrange
    /// basis polynomials `l_i(X)` defined such that `l_i(omega^i) = 1` and
    /// `l_i(omega^j) = 0` for all `j != i` at each provided rotation `i`.
    ///
    /// # Implementation
    ///
    /// The polynomial
    ///     $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j)$$
    /// has a root at all points in the domain except $\omega^i$, where it evaluates to
    ///     $$\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$
    /// and so we divide that polynomial by this value to obtain $l_i(X)$. Since
    ///     $$\prod_{j=0,j \neq i}^{n - 1} (X - \omega^j)
    ///       = \frac{X^n - 1}{X - \omega^i}$$
    /// then $l_i(x)$ for some $x$ is evaluated as
    ///     $$\left(\frac{x^n - 1}{x - \omega^i}\right)
    ///       \cdot \left(\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}\right).$$
    /// We refer to
    ///     $$1 \over \prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)$$
    /// as the barycentric weight of $\omega^i$.
    ///
    /// We know that for $i = 0$
    ///     $$\frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)} = \frac{1}{n}.$$
    ///
    /// If we multiply $(1 / n)$ by $\omega^i$ then we obtain
    ///     $$\frac{1}{\prod_{j=0,j \neq 0}^{n - 1} (\omega^i - \omega^j)}
    ///       = \frac{1}{\prod_{j=0,j \neq i}^{n - 1} (\omega^i - \omega^j)}$$
    /// which is the barycentric weight of $\omega^i$.
    pub fn l_i_range<I: IntoIterator<Item = i32> + Clone>(
        &self,
        x: F,
        xn: F,
        rotations: I,
    ) -> Vec<F> {
        let mut results;
        {
            let rotations = rotations.clone().into_iter();
            results = Vec::with_capacity(rotations.size_hint().1.unwrap_or(0));
            for rotation in rotations {
                let rotation = Rotation(rotation);
                let result = x - self.rotate_omega(F::ONE, rotation);
                results.push(result);
            }
            results.iter_mut().batch_invert();
        }

        let common = (xn - F::ONE) * self.barycentric_weight;
        for (rotation, result) in rotations.into_iter().zip(results.iter_mut()) {
            let rotation = Rotation(rotation);
            *result = self.rotate_omega(*result * common, rotation);
        }

        results
    }

    /// Gets the quotient polynomial's degree (as a multiple of n)
    pub fn get_quotient_poly_degree(&self) -> usize {
        self.quotient_poly_degree as usize
    }

    /// Obtain a pinned version of this evaluation domain; a structure with the
    /// minimal parameters needed to determine the rest of the evaluation
    /// domain.
    pub fn pinned(&self) -> PinnedEvaluationDomain<'_, F> {
        PinnedEvaluationDomain {
            k: &self.k,
            extended_k: &self.extended_k,
            omega: &self.omega,
        }
    }
}

/// Represents the minimal parameters that determine an `EvaluationDomain`.
#[allow(dead_code)]
#[derive(Debug)]
pub struct PinnedEvaluationDomain<'a, F: Field> {
    k: &'a u32,
    extended_k: &'a u32,
    omega: &'a F,
}

#[test]
fn test_rotate() {
    use rand_core::OsRng;

    use crate::arithmetic::eval_polynomial;
    use halo2curves::pasta::pallas::Scalar;

    let domain = EvaluationDomain::<Scalar>::new(1, 3);
    let rng = OsRng;

    let mut poly = domain.empty_lagrange();
    assert_eq!(poly.len(), 8);
    for value in poly.iter_mut() {
        *value = Scalar::random(rng);
    }

    let poly_rotated_cur = poly.rotate(Rotation::cur());
    let poly_rotated_next = poly.rotate(Rotation::next());
    let poly_rotated_prev = poly.rotate(Rotation::prev());

    let poly = domain.lagrange_to_coeff(poly);
    let poly_rotated_cur = domain.lagrange_to_coeff(poly_rotated_cur);
    let poly_rotated_next = domain.lagrange_to_coeff(poly_rotated_next);
    let poly_rotated_prev = domain.lagrange_to_coeff(poly_rotated_prev);

    let x = Scalar::random(rng);

    assert_eq!(
        eval_polynomial(&poly[..], x),
        eval_polynomial(&poly_rotated_cur[..], x)
    );
    assert_eq!(
        eval_polynomial(&poly[..], x * domain.omega),
        eval_polynomial(&poly_rotated_next[..], x)
    );
    assert_eq!(
        eval_polynomial(&poly[..], x * domain.omega_inv),
        eval_polynomial(&poly_rotated_prev[..], x)
    );
}

#[test]
fn test_l_i() {
    use rand_core::OsRng;

    use crate::arithmetic::{eval_polynomial, lagrange_interpolate};
    use halo2curves::pasta::pallas::Scalar;
    let domain = EvaluationDomain::<Scalar>::new(1, 3);

    let mut l = vec![];
    let mut points = vec![];
    for i in 0..8 {
        points.push(domain.omega.pow([i]));
    }
    for i in 0..8 {
        let mut l_i = vec![Scalar::zero(); 8];
        l_i[i] = Scalar::ONE;
        let l_i = lagrange_interpolate(&points[..], &l_i[..]);
        l.push(l_i);
    }

    let x = Scalar::random(OsRng);
    let xn = x.pow([8]);

    let evaluations = domain.l_i_range(x, xn, -7..=7);
    for i in 0..8 {
        assert_eq!(eval_polynomial(&l[i][..], x), evaluations[7 + i]);
        assert_eq!(eval_polynomial(&l[(8 - i) % 8][..], x), evaluations[7 - i]);
    }
}