1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//! Traits and structs for implementing circuit components.
use crate::plonk::{self, AssignError};
use crate::plonk::{
permutation,
sealed::{self, SealedPhase},
Advice, Assignment, Circuit, ConstraintSystem, FirstPhase, Fixed, FloorPlanner, Instance,
SecondPhase, ThirdPhase,
};
use halo2_middleware::circuit::{Any, CompiledCircuit, Preprocessing};
use halo2_middleware::ff::{BatchInvert, Field};
use std::collections::BTreeSet;
use std::collections::HashMap;
use std::fmt::Debug;
use std::ops::RangeTo;
pub mod floor_planner;
mod table_layouter;
use std::{fmt, marker::PhantomData};
use crate::plonk::Assigned;
use crate::plonk::{Challenge, Column, Error, Selector, TableColumn};
mod value;
pub use value::Value;
pub use floor_planner::single_pass::SimpleFloorPlanner;
pub mod layouter;
pub use table_layouter::{SimpleTableLayouter, TableLayouter};
/// Compile a circuit. Runs configure and synthesize on the circuit in order to materialize the
/// circuit into its columns and the column configuration; as well as doing the fixed column and
/// copy constraints assignments. The output of this function can then be used for the key
/// generation, and proof generation.
/// If `compress_selectors` is true, multiple selector columns may be multiplexed.
#[allow(clippy::type_complexity)]
pub fn compile_circuit<F: Field, ConcreteCircuit: Circuit<F>>(
k: u32,
circuit: &ConcreteCircuit,
compress_selectors: bool,
) -> Result<
(
CompiledCircuit<F>,
ConcreteCircuit::Config,
ConstraintSystem<F>,
),
Error,
> {
let n = 2usize.pow(k);
let mut cs = ConstraintSystem::default();
#[cfg(feature = "circuit-params")]
let config = ConcreteCircuit::configure_with_params(&mut cs, circuit.params());
#[cfg(not(feature = "circuit-params"))]
let config = ConcreteCircuit::configure(&mut cs);
let cs = cs;
if n < cs.minimum_rows() {
return Err(Error::not_enough_rows_available(k));
}
let mut assembly = plonk::keygen::Assembly {
k,
fixed: vec![vec![F::ZERO.into(); n]; cs.num_fixed_columns],
permutation: permutation::Assembly::new(n, &cs.permutation),
selectors: vec![vec![false; n]; cs.num_selectors],
usable_rows: 0..n - (cs.blinding_factors() + 1),
_marker: std::marker::PhantomData,
};
// Synthesize the circuit to obtain URS
ConcreteCircuit::FloorPlanner::synthesize(
&mut assembly,
circuit,
config.clone(),
cs.constants.clone(),
)?;
let mut fixed = batch_invert_assigned(assembly.fixed);
let (cs, selector_polys) = if compress_selectors {
cs.compress_selectors(assembly.selectors)
} else {
// After this, the ConstraintSystem should not have any selectors: `verify` does not need them, and `keygen_pk` regenerates `cs` from scratch anyways.
let selectors = std::mem::take(&mut assembly.selectors);
cs.directly_convert_selectors_to_fixed(selectors)
};
fixed.extend(selector_polys);
// sort the "copies" for deterministic ordering
#[cfg(feature = "thread-safe-region")]
assembly.permutation.copies.sort();
let preprocessing = Preprocessing {
permutation: halo2_middleware::permutation::AssemblyMid {
copies: assembly.permutation.copies,
},
fixed,
};
Ok((
CompiledCircuit {
cs: cs.clone().into(),
preprocessing,
},
config,
cs,
))
}
struct WitnessCollection<'a, F: Field> {
k: u32,
current_phase: sealed::Phase,
advice_column_phase: &'a Vec<sealed::Phase>,
advice: Vec<Vec<Assigned<F>>>,
challenges: &'a HashMap<usize, F>,
instances: &'a [Vec<F>],
usable_rows: RangeTo<usize>,
}
impl<'a, F: Field> Assignment<F> for WitnessCollection<'a, F> {
fn enter_region<NR, N>(&mut self, _: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
// Do nothing; we don't care about regions in this context.
}
fn exit_region(&mut self) {
// Do nothing; we don't care about regions in this context.
}
fn enable_selector<A, AR>(&mut self, _: A, _: &Selector, _: usize) -> Result<(), Error>
where
A: FnOnce() -> AR,
AR: Into<String>,
{
// We only care about advice columns here
Ok(())
}
fn annotate_column<A, AR>(&mut self, _annotation: A, _column: Column<Any>)
where
A: FnOnce() -> AR,
AR: Into<String>,
{
// Do nothing
}
fn query_instance(&self, column: Column<Instance>, row: usize) -> Result<Value<F>, Error> {
if !self.usable_rows.contains(&row) {
return Err(Error::AssignError(AssignError::QueryInstance {
col: column.into(),
row,
usable_rows: (0, self.usable_rows.end),
k: self.k,
}));
}
self.instances
.get(column.index())
.and_then(|column| column.get(row))
.map(|v| Value::known(*v))
.ok_or(Error::BoundsFailure)
}
fn assign_advice<V, VR, A, AR>(
&mut self,
desc: A,
column: Column<Advice>,
row: usize,
to: V,
) -> Result<(), Error>
where
V: FnOnce() -> Value<VR>,
VR: Into<Assigned<F>>,
A: FnOnce() -> AR,
AR: Into<String>,
{
// Ignore assignment of advice column in different phase than current one.
let phase = self.advice_column_phase[column.index];
if self.current_phase != phase {
return Ok(());
}
if !self.usable_rows.contains(&row) {
return Err(Error::AssignError(AssignError::AssignAdvice {
desc: desc().into(),
col: column.into(),
row,
usable_rows: (0, self.usable_rows.end),
k: self.k,
}));
}
let value = match to().into_field().assign() {
Ok(v) => v,
Err(_) => {
return Err(Error::AssignError(AssignError::WitnessMissing {
func: "assign_advice".to_string(),
desc: desc().into(),
}))
}
};
*self
.advice
.get_mut(column.index())
.and_then(|v| v.get_mut(row))
.ok_or(Error::BoundsFailure)? = value;
Ok(())
}
fn assign_fixed<V, VR, A, AR>(
&mut self,
_: A,
_: Column<Fixed>,
_: usize,
_: V,
) -> Result<(), Error>
where
V: FnOnce() -> Value<VR>,
VR: Into<Assigned<F>>,
A: FnOnce() -> AR,
AR: Into<String>,
{
// We only care about advice columns here
Ok(())
}
fn copy(&mut self, _: Column<Any>, _: usize, _: Column<Any>, _: usize) -> Result<(), Error> {
// We only care about advice columns here
Ok(())
}
fn fill_from_row(
&mut self,
_: Column<Fixed>,
_: usize,
_: Value<Assigned<F>>,
) -> Result<(), Error> {
Ok(())
}
fn get_challenge(&self, challenge: Challenge) -> Value<F> {
self.challenges
.get(&challenge.index())
.cloned()
.map(Value::known)
.unwrap_or_else(Value::unknown)
}
fn push_namespace<NR, N>(&mut self, _: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
// Do nothing; we don't care about namespaces in this context.
}
fn pop_namespace(&mut self, _: Option<String>) {
// Do nothing; we don't care about namespaces in this context.
}
}
/// Witness calculator. Frontend function
#[derive(Debug)]
pub struct WitnessCalculator<'a, F: Field, ConcreteCircuit: Circuit<F>> {
k: u32,
n: usize,
unusable_rows_start: usize,
circuit: &'a ConcreteCircuit,
config: &'a ConcreteCircuit::Config,
cs: &'a ConstraintSystem<F>,
instances: &'a [Vec<F>],
next_phase: u8,
}
impl<'a, F: Field, ConcreteCircuit: Circuit<F>> WitnessCalculator<'a, F, ConcreteCircuit> {
/// Create a new WitnessCalculator
pub fn new(
k: u32,
circuit: &'a ConcreteCircuit,
config: &'a ConcreteCircuit::Config,
cs: &'a ConstraintSystem<F>,
instances: &'a [Vec<F>],
) -> Self {
let n = 2usize.pow(k);
let unusable_rows_start = n - (cs.blinding_factors() + 1);
Self {
k,
n,
unusable_rows_start,
circuit,
config,
cs,
instances,
next_phase: 0,
}
}
/// Calculate witness at phase
pub fn calc(
&mut self,
phase: u8,
challenges: &HashMap<usize, F>,
) -> Result<Vec<Option<Vec<F>>>, Error> {
if phase != self.next_phase {
return Err(Error::Other(format!(
"Expected phase {}, got {}",
self.next_phase, phase
)));
}
let current_phase = match phase {
0 => FirstPhase.to_sealed(),
1 => SecondPhase.to_sealed(),
2 => ThirdPhase.to_sealed(),
_ => unreachable!("only phase [0,2] supported"),
};
let mut witness = WitnessCollection {
k: self.k,
current_phase,
advice_column_phase: &self.cs.advice_column_phase,
advice: vec![vec![Assigned::Zero; self.n]; self.cs.num_advice_columns],
instances: self.instances,
challenges,
// The prover will not be allowed to assign values to advice
// cells that exist within inactive rows, which include some
// number of blinding factors and an extra row for use in the
// permutation argument.
usable_rows: ..self.unusable_rows_start,
};
// Synthesize the circuit to obtain the witness and other information.
ConcreteCircuit::FloorPlanner::synthesize(
&mut witness,
self.circuit,
self.config.clone(),
self.cs.constants.clone(),
)
.expect("todo");
let column_indices = self
.cs
.advice_column_phase
.iter()
.enumerate()
.filter_map(|(column_index, phase)| {
if current_phase == *phase {
Some(column_index)
} else {
None
}
})
.collect::<BTreeSet<_>>();
self.next_phase += 1;
let advice_values = batch_invert_assigned(witness.advice);
Ok(advice_values
.into_iter()
.enumerate()
.map(|(column_index, advice)| {
if column_indices.contains(&column_index) {
Some(advice)
} else {
None
}
})
.collect())
}
}
// Turn vectors of `Assigned<F>` into vectors of `F` by evaluation the divisions in `Assigned<F>`
// using batched inversions.
fn batch_invert_assigned<F: Field>(assigned: Vec<Vec<Assigned<F>>>) -> Vec<Vec<F>> {
let mut assigned_denominators: Vec<_> = assigned
.iter()
.map(|f| {
f.iter()
.map(|value| value.denominator())
.collect::<Vec<_>>()
})
.collect();
assigned_denominators
.iter_mut()
.flat_map(|f| {
f.iter_mut()
// If the denominator is trivial, we can skip it, reducing the
// size of the batch inversion.
.filter_map(|d| d.as_mut())
})
.batch_invert();
assigned
.iter()
.zip(assigned_denominators)
.map(|(poly, inv_denoms)| {
poly_invert(poly, inv_denoms.into_iter().map(|d| d.unwrap_or(F::ONE)))
})
.collect()
}
// Turn a slice of `Assigned<F>` into a vector of F by multiplying each numerator with the elements
// from `inv_denoms`, assuming that `inv_denoms` are the inverted denominators of the
// `Assigned<F>`.
fn poly_invert<F: Field>(
poly: &[Assigned<F>],
inv_denoms: impl ExactSizeIterator<Item = F>,
) -> Vec<F> {
assert_eq!(inv_denoms.len(), poly.len());
poly.iter()
.zip(inv_denoms)
.map(|(a, inv_den)| a.numerator() * inv_den)
.collect()
}
/// A chip implements a set of instructions that can be used by gadgets.
///
/// The chip stores state that is required at circuit synthesis time in
/// [`Chip::Config`], which can be fetched via [`Chip::config`].
///
/// The chip also loads any fixed configuration needed at synthesis time
/// using its own implementation of `load`, and stores it in [`Chip::Loaded`].
/// This can be accessed via [`Chip::loaded`].
pub trait Chip<F: Field>: Sized {
/// A type that holds the configuration for this chip, and any other state it may need
/// during circuit synthesis, that can be derived during [`Circuit::configure`].
///
/// [`Circuit::configure`]: crate::plonk::Circuit::configure
type Config: fmt::Debug + Clone;
/// A type that holds any general chip state that needs to be loaded at the start of
/// [`Circuit::synthesize`]. This might simply be `()` for some chips.
///
/// [`Circuit::synthesize`]: crate::plonk::Circuit::synthesize
type Loaded: fmt::Debug + Clone;
/// The chip holds its own configuration.
fn config(&self) -> &Self::Config;
/// Provides access to general chip state loaded at the beginning of circuit
/// synthesis.
///
/// Panics if called before `Chip::load`.
fn loaded(&self) -> &Self::Loaded;
}
/// Index of a region in a layouter
#[derive(Clone, Copy, Debug)]
pub struct RegionIndex(usize);
impl From<usize> for RegionIndex {
fn from(idx: usize) -> RegionIndex {
RegionIndex(idx)
}
}
impl std::ops::Deref for RegionIndex {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// Starting row of a region in a layouter
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct RegionStart(usize);
impl From<usize> for RegionStart {
fn from(idx: usize) -> RegionStart {
RegionStart(idx)
}
}
impl std::ops::Deref for RegionStart {
type Target = usize;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// A pointer to a cell within a circuit.
#[derive(Clone, Copy, Debug)]
pub struct Cell {
/// Identifies the region in which this cell resides.
pub region_index: RegionIndex,
/// The relative offset of this cell within its region.
pub row_offset: usize,
/// The column of this cell.
pub column: Column<Any>,
}
/// An assigned cell.
#[derive(Clone, Debug)]
pub struct AssignedCell<V, F: Field> {
value: Value<V>,
cell: Cell,
_marker: PhantomData<F>,
}
impl<V, F: Field> AssignedCell<V, F> {
/// Returns the value of the [`AssignedCell`].
pub fn value(&self) -> Value<&V> {
self.value.as_ref()
}
/// Returns the cell.
pub fn cell(&self) -> Cell {
self.cell
}
}
impl<V, F: Field> AssignedCell<V, F>
where
for<'v> Assigned<F>: From<&'v V>,
{
/// Returns the field element value of the [`AssignedCell`].
pub fn value_field(&self) -> Value<Assigned<F>> {
self.value.to_field()
}
}
impl<F: Field> AssignedCell<Assigned<F>, F> {
/// Evaluates this assigned cell's value directly, performing an unbatched inversion
/// if necessary.
///
/// If the denominator is zero, the returned cell's value is zero.
pub fn evaluate(self) -> AssignedCell<F, F> {
AssignedCell {
value: self.value.evaluate(),
cell: self.cell,
_marker: Default::default(),
}
}
}
impl<V: Clone, F: Field> AssignedCell<V, F>
where
for<'v> Assigned<F>: From<&'v V>,
{
/// Copies the value to a given advice cell and constrains them to be equal.
///
/// Returns an error if either this cell or the given cell are in columns
/// where equality has not been enabled.
pub fn copy_advice<A, AR>(
&self,
annotation: A,
region: &mut Region<'_, F>,
column: Column<Advice>,
offset: usize,
) -> Result<Self, Error>
where
A: Fn() -> AR,
AR: Into<String>,
{
let assigned_cell =
region.assign_advice(annotation, column, offset, || self.value.clone())?;
region.constrain_equal(assigned_cell.cell(), self.cell())?;
Ok(assigned_cell)
}
}
/// A region of the circuit in which a [`Chip`] can assign cells.
///
/// Inside a region, the chip may freely use relative offsets; the [`Layouter`] will
/// treat these assignments as a single "region" within the circuit.
///
/// The [`Layouter`] is allowed to optimise between regions as it sees fit. Chips must use
/// [`Region::constrain_equal`] to copy in variables assigned in other regions.
///
/// TODO: It would be great if we could constrain the columns in these types to be
/// "logical" columns that are guaranteed to correspond to the chip (and have come from
/// `Chip::Config`).
#[derive(Debug)]
pub struct Region<'r, F: Field> {
region: &'r mut dyn layouter::RegionLayouter<F>,
}
impl<'r, F: Field> From<&'r mut dyn layouter::RegionLayouter<F>> for Region<'r, F> {
fn from(region: &'r mut dyn layouter::RegionLayouter<F>) -> Self {
Region { region }
}
}
impl<'r, F: Field> Region<'r, F> {
/// Enables a selector at the given offset.
pub fn enable_selector<A, AR>(
&mut self,
annotation: A,
selector: &Selector,
offset: usize,
) -> Result<(), Error>
where
A: Fn() -> AR,
AR: Into<String>,
{
self.region
.enable_selector(&|| annotation().into(), selector, offset)
}
/// Allows the circuit implementor to name/annotate a Column within a Region context.
///
/// This is useful in order to improve the amount of information that `prover.verify()`
/// and `prover.assert_satisfied()` can provide.
pub fn name_column<A, AR, T>(&mut self, annotation: A, column: T)
where
A: Fn() -> AR,
AR: Into<String>,
T: Into<Column<Any>>,
{
self.region
.name_column(&|| annotation().into(), column.into());
}
/// Assign an advice column value (witness).
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
pub fn assign_advice<'v, V, VR, A, AR>(
&'v mut self,
annotation: A,
column: Column<Advice>,
offset: usize,
mut to: V,
) -> Result<AssignedCell<VR, F>, Error>
where
V: FnMut() -> Value<VR> + 'v,
for<'vr> Assigned<F>: From<&'vr VR>,
A: Fn() -> AR,
AR: Into<String>,
{
let mut value = Value::unknown();
let cell =
self.region
.assign_advice(&|| annotation().into(), column, offset, &mut || {
let v = to();
let value_f = v.to_field();
value = v;
value_f
})?;
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
}
/// Assigns a constant value to the column `advice` at `offset` within this region.
///
/// The constant value will be assigned to a cell within one of the fixed columns
/// configured via `ConstraintSystem::enable_constant`.
///
/// Returns the advice cell.
pub fn assign_advice_from_constant<VR, A, AR>(
&mut self,
annotation: A,
column: Column<Advice>,
offset: usize,
constant: VR,
) -> Result<AssignedCell<VR, F>, Error>
where
for<'vr> Assigned<F>: From<&'vr VR>,
A: Fn() -> AR,
AR: Into<String>,
{
let cell = self.region.assign_advice_from_constant(
&|| annotation().into(),
column,
offset,
(&constant).into(),
)?;
Ok(AssignedCell {
value: Value::known(constant),
cell,
_marker: PhantomData,
})
}
/// Assign the value of the instance column's cell at absolute location
/// `row` to the column `advice` at `offset` within this region.
///
/// Returns the advice cell, and its value if known.
pub fn assign_advice_from_instance<A, AR>(
&mut self,
annotation: A,
instance: Column<Instance>,
row: usize,
advice: Column<Advice>,
offset: usize,
) -> Result<AssignedCell<F, F>, Error>
where
A: Fn() -> AR,
AR: Into<String>,
{
let (cell, value) = self.region.assign_advice_from_instance(
&|| annotation().into(),
instance,
row,
advice,
offset,
)?;
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
}
/// Returns the value of the instance column's cell at absolute location `row`.
///
/// This method is only provided for convenience; it does not create any constraints.
/// Callers still need to use [`Self::assign_advice_from_instance`] to constrain the
/// instance values in their circuit.
pub fn instance_value(
&mut self,
instance: Column<Instance>,
row: usize,
) -> Result<Value<F>, Error> {
self.region.instance_value(instance, row)
}
/// Assign a fixed value.
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
pub fn assign_fixed<'v, V, VR, A, AR>(
&'v mut self,
annotation: A,
column: Column<Fixed>,
offset: usize,
mut to: V,
) -> Result<AssignedCell<VR, F>, Error>
where
V: FnMut() -> Value<VR> + 'v,
for<'vr> Assigned<F>: From<&'vr VR>,
A: Fn() -> AR,
AR: Into<String>,
{
let mut value = Value::unknown();
let cell =
self.region
.assign_fixed(&|| annotation().into(), column, offset, &mut || {
let v = to();
let value_f = v.to_field();
value = v;
value_f
})?;
Ok(AssignedCell {
value,
cell,
_marker: PhantomData,
})
}
/// Constrains a cell to have a constant value.
///
/// Returns an error if the cell is in a column where equality has not been enabled.
pub fn constrain_constant<VR>(&mut self, cell: Cell, constant: VR) -> Result<(), Error>
where
VR: Into<Assigned<F>>,
{
self.region.constrain_constant(cell, constant.into())
}
/// Constrains two cells to have the same value.
///
/// Returns an error if either of the cells are in columns where equality
/// has not been enabled.
pub fn constrain_equal(&mut self, left: Cell, right: Cell) -> Result<(), Error> {
self.region.constrain_equal(left, right)
}
}
/// A lookup table in the circuit.
#[derive(Debug)]
pub struct Table<'r, F: Field> {
table: &'r mut dyn TableLayouter<F>,
}
impl<'r, F: Field> From<&'r mut dyn TableLayouter<F>> for Table<'r, F> {
fn from(table: &'r mut dyn TableLayouter<F>) -> Self {
Table { table }
}
}
impl<'r, F: Field> Table<'r, F> {
/// Assigns a fixed value to a table cell.
///
/// Returns an error if the table cell has already been assigned to.
///
/// Even though `to` has `FnMut` bounds, it is guaranteed to be called at most once.
pub fn assign_cell<'v, V, VR, A, AR>(
&'v mut self,
annotation: A,
column: TableColumn,
offset: usize,
mut to: V,
) -> Result<(), Error>
where
V: FnMut() -> Value<VR> + 'v,
VR: Into<Assigned<F>>,
A: Fn() -> AR,
AR: Into<String>,
{
self.table
.assign_cell(&|| annotation().into(), column, offset, &mut || {
to().into_field()
})
}
}
/// A layout strategy within a circuit. The layouter is chip-agnostic and applies its
/// strategy to the context and config it is given.
///
/// This abstracts over the circuit assignments, handling row indices etc.
///
pub trait Layouter<F: Field> {
/// Represents the type of the "root" of this layouter, so that nested namespaces
/// can minimize indirection.
type Root: Layouter<F>;
/// Assign a region of gates to an absolute row number.
///
/// Inside the closure, the chip may freely use relative offsets; the `Layouter` will
/// treat these assignments as a single "region" within the circuit. Outside this
/// closure, the `Layouter` is allowed to optimise as it sees fit.
///
/// ```ignore
/// fn assign_region(&mut self, || "region name", |region| {
/// let config = chip.config();
/// region.assign_advice(config.a, offset, || { Some(value)});
/// });
/// ```
fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
where
A: FnMut(Region<'_, F>) -> Result<AR, Error>,
N: Fn() -> NR,
NR: Into<String>;
/// Assign a table region to an absolute row number.
///
/// ```ignore
/// fn assign_table(&mut self, || "table name", |table| {
/// let config = chip.config();
/// table.assign_fixed(config.a, offset, || { Some(value)});
/// });
/// ```
fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
where
A: FnMut(Table<'_, F>) -> Result<(), Error>,
N: Fn() -> NR,
NR: Into<String>;
/// Constrains a [`Cell`] to equal an instance column's row value at an
/// absolute position.
fn constrain_instance(
&mut self,
cell: Cell,
column: Column<Instance>,
row: usize,
) -> Result<(), Error>;
/// Queries the value of the given challenge.
///
/// Returns `Value::unknown()` if the current synthesis phase is before the challenge can be queried.
fn get_challenge(&self, challenge: Challenge) -> Value<F>;
/// Gets the "root" of this assignment, bypassing the namespacing.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn get_root(&mut self) -> &mut Self::Root;
/// Creates a new (sub)namespace and enters into it.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn push_namespace<NR, N>(&mut self, name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR;
/// Exits out of the existing namespace.
///
/// Not intended for downstream consumption; use [`Layouter::namespace`] instead.
fn pop_namespace(&mut self, gadget_name: Option<String>);
/// Enters into a namespace.
fn namespace<NR, N>(&mut self, name_fn: N) -> NamespacedLayouter<'_, F, Self::Root>
where
NR: Into<String>,
N: FnOnce() -> NR,
{
self.get_root().push_namespace(name_fn);
NamespacedLayouter(self.get_root(), PhantomData)
}
}
/// This is a "namespaced" layouter which borrows a `Layouter` (pushing a namespace
/// context) and, when dropped, pops out of the namespace context.
#[derive(Debug)]
pub struct NamespacedLayouter<'a, F: Field, L: Layouter<F> + 'a>(&'a mut L, PhantomData<F>);
impl<'a, F: Field, L: Layouter<F> + 'a> Layouter<F> for NamespacedLayouter<'a, F, L> {
type Root = L::Root;
fn assign_region<A, AR, N, NR>(&mut self, name: N, assignment: A) -> Result<AR, Error>
where
A: FnMut(Region<'_, F>) -> Result<AR, Error>,
N: Fn() -> NR,
NR: Into<String>,
{
self.0.assign_region(name, assignment)
}
fn assign_table<A, N, NR>(&mut self, name: N, assignment: A) -> Result<(), Error>
where
A: FnMut(Table<'_, F>) -> Result<(), Error>,
N: Fn() -> NR,
NR: Into<String>,
{
self.0.assign_table(name, assignment)
}
fn constrain_instance(
&mut self,
cell: Cell,
column: Column<Instance>,
row: usize,
) -> Result<(), Error> {
self.0.constrain_instance(cell, column, row)
}
fn get_challenge(&self, challenge: Challenge) -> Value<F> {
self.0.get_challenge(challenge)
}
fn get_root(&mut self) -> &mut Self::Root {
self.0.get_root()
}
fn push_namespace<NR, N>(&mut self, _name_fn: N)
where
NR: Into<String>,
N: FnOnce() -> NR,
{
panic!("Only the root's push_namespace should be called");
}
fn pop_namespace(&mut self, _gadget_name: Option<String>) {
panic!("Only the root's pop_namespace should be called");
}
}
impl<'a, F: Field, L: Layouter<F> + 'a> Drop for NamespacedLayouter<'a, F, L> {
fn drop(&mut self) {
let gadget_name = {
#[cfg(feature = "gadget-traces")]
{
let mut gadget_name = None;
let mut is_second_frame = false;
backtrace::trace(|frame| {
if is_second_frame {
// Resolve this instruction pointer to a symbol name.
backtrace::resolve_frame(frame, |symbol| {
gadget_name = symbol.name().map(|name| format!("{name:#}"));
});
// We are done!
false
} else {
// We want the next frame.
is_second_frame = true;
true
}
});
gadget_name
}
#[cfg(not(feature = "gadget-traces"))]
None
};
self.get_root().pop_namespace(gadget_name);
}
}