1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
//! This module provides "ZK Acceleration Layer" traits
//! to abstract away the execution engine for performance-critical primitives.
//!
//! Terminology
//! -----------
//!
//! We use the name Backend+Engine for concrete implementations of ZalEngine.
//! For example H2cEngine for pure Halo2curves implementation.
//!
//! Alternative names considered were Executor or Driver however
//! - executor is already used in Rust (and the name is long)
//! - driver will be confusing as we work quite low-level with GPUs and FPGAs.
//!
//! Unfortunately the "Engine" name is used in bn256 for pairings.
//! Fortunately a ZalEngine is only used in the prover (at least for now)
//! while "pairing engine" is only used in the verifier
//!
//! Initialization design space
//! ---------------------------
//!
//! It is recommended that ZAL backends provide:
//! - an initialization function:
//! - either "fn new() -> ZalEngine" for simple libraries
//! - or a builder pattern for complex initializations
//! - a shutdown function or document when it is not needed (when it's a global threadpool like Rayon for example).
//!
//! Backends might want to add as an option:
//! - The number of threads (CPU)
//! - The device(s) to run on (multi-sockets machines, multi-GPUs machines, ...)
//! - The curve (JIT-compiled backend)
//!
//! Descriptors
//! ---------------------------
//!
//! Descriptors enable providers to configure opaque details on data
//! when doing repeated computations with the same input(s).
//! For example:
//! - Pointer(s) caching to limit data movement between CPU and GPU, FPGAs
//! - Length of data
//! - data in layout:
//! - canonical or Montgomery fields, unsaturated representation, endianness
//! - jacobian or projective coordinates or maybe even Twisted Edwards for faster elliptic curve additions,
//! - FFT: canonical or bit-reversed permuted
//! - data out layout
//! - Device(s) ID
//!
//! For resources that need special cleanup like GPU memory, a custom `Drop` is required.
//!
//! Note that resources can also be stored in the engine in a hashmap
//! and an integer ID or a pointer can be opaquely given as a descriptor.
// The ZK Accel Layer API
// ---------------------------------------------------
pub mod traits {
use halo2curves::CurveAffine;
pub trait MsmAccel<C: CurveAffine> {
fn msm(&self, coeffs: &[C::Scalar], base: &[C]) -> C::Curve;
// Caching API
// -------------------------------------------------
// From here we propose an extended API
// that allows reusing coeffs and/or the base points
//
// This is inspired by CuDNN API (Nvidia GPU)
// and oneDNN API (CPU, OpenCL) https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-ops-infer-so-opaque
// usage of descriptors
//
// https://github.com/oneapi-src/oneDNN/blob/master/doc/programming_model/basic_concepts.md
//
// Descriptors are opaque pointers that hold the input in a format suitable for the accelerator engine.
// They may be:
// - Input moved on accelerator device (only once for repeated calls)
// - Endianness conversion
// - Converting from Montgomery to Canonical form
// - Input changed from Projective to Jacobian coordinates or even to a Twisted Edwards curve.
// - other form of expensive preprocessing
type CoeffsDescriptor<'c>;
type BaseDescriptor<'b>;
fn get_coeffs_descriptor<'c>(&self, coeffs: &'c [C::Scalar]) -> Self::CoeffsDescriptor<'c>;
fn get_base_descriptor<'b>(&self, base: &'b [C]) -> Self::BaseDescriptor<'b>;
fn msm_with_cached_scalars(
&self,
coeffs: &Self::CoeffsDescriptor<'_>,
base: &[C],
) -> C::Curve;
fn msm_with_cached_base(
&self,
coeffs: &[C::Scalar],
base: &Self::BaseDescriptor<'_>,
) -> C::Curve;
fn msm_with_cached_inputs(
&self,
coeffs: &Self::CoeffsDescriptor<'_>,
base: &Self::BaseDescriptor<'_>,
) -> C::Curve;
// Execute MSM according to descriptors
// Unsure of naming, msm_with_cached_inputs, msm_apply, msm_cached, msm_with_descriptors, ...
}
}
// ZAL using Halo2curves as a backend
// ---------------------------------------------------
pub mod impls {
use std::marker::PhantomData;
use crate::zal::traits::MsmAccel;
use halo2curves::msm::msm_best;
use halo2curves::CurveAffine;
// Halo2curve Backend
// ---------------------------------------------------
#[derive(Default)]
pub struct H2cEngine;
pub struct H2cMsmCoeffsDesc<'c, C: CurveAffine> {
raw: &'c [C::Scalar],
}
pub struct H2cMsmBaseDesc<'b, C: CurveAffine> {
raw: &'b [C],
}
impl H2cEngine {
pub fn new() -> Self {
Self {}
}
}
impl<C: CurveAffine> MsmAccel<C> for H2cEngine {
fn msm(&self, coeffs: &[C::Scalar], bases: &[C]) -> C::Curve {
msm_best(coeffs, bases)
}
// Caching API
// -------------------------------------------------
type CoeffsDescriptor<'c> = H2cMsmCoeffsDesc<'c, C>;
type BaseDescriptor<'b> = H2cMsmBaseDesc<'b, C>;
fn get_coeffs_descriptor<'c>(&self, coeffs: &'c [C::Scalar]) -> Self::CoeffsDescriptor<'c> {
// Do expensive device/library specific preprocessing here
Self::CoeffsDescriptor { raw: coeffs }
}
fn get_base_descriptor<'b>(&self, base: &'b [C]) -> Self::BaseDescriptor<'b> {
Self::BaseDescriptor { raw: base }
}
fn msm_with_cached_scalars(
&self,
coeffs: &Self::CoeffsDescriptor<'_>,
base: &[C],
) -> C::Curve {
msm_best(coeffs.raw, base)
}
fn msm_with_cached_base(
&self,
coeffs: &[C::Scalar],
base: &Self::BaseDescriptor<'_>,
) -> C::Curve {
msm_best(coeffs, base.raw)
}
fn msm_with_cached_inputs(
&self,
coeffs: &Self::CoeffsDescriptor<'_>,
base: &Self::BaseDescriptor<'_>,
) -> C::Curve {
msm_best(coeffs.raw, base.raw)
}
}
// Backend-agnostic engine objects
// ---------------------------------------------------
#[derive(Debug)]
pub struct PlonkEngine<C: CurveAffine, MsmEngine: MsmAccel<C>> {
pub msm_backend: MsmEngine,
_marker: PhantomData<C>, // compiler complains about unused C otherwise
}
#[derive(Default)]
pub struct PlonkEngineConfig<C, M> {
curve: PhantomData<C>,
msm_backend: M,
}
#[derive(Default)]
pub struct NoCurve;
#[derive(Default)]
pub struct HasCurve<C: CurveAffine>(PhantomData<C>);
#[derive(Default)]
pub struct NoMsmEngine;
pub struct HasMsmEngine<C: CurveAffine, M: MsmAccel<C>>(M, PhantomData<C>);
impl PlonkEngineConfig<NoCurve, NoMsmEngine> {
pub fn new() -> PlonkEngineConfig<NoCurve, NoMsmEngine> {
Default::default()
}
pub fn set_curve<C: CurveAffine>(self) -> PlonkEngineConfig<HasCurve<C>, NoMsmEngine> {
Default::default()
}
pub fn build_default<C: CurveAffine>() -> PlonkEngine<C, H2cEngine> {
PlonkEngine {
msm_backend: H2cEngine::new(),
_marker: Default::default(),
}
}
}
impl<C: CurveAffine, M> PlonkEngineConfig<HasCurve<C>, M> {
pub fn set_msm<MsmEngine: MsmAccel<C>>(
self,
engine: MsmEngine,
) -> PlonkEngineConfig<HasCurve<C>, HasMsmEngine<C, MsmEngine>> {
// Copy all other parameters
let Self { curve, .. } = self;
// Return with modified MSM engine
PlonkEngineConfig {
curve,
msm_backend: HasMsmEngine(engine, Default::default()),
}
}
}
impl<C: CurveAffine, M: MsmAccel<C>> PlonkEngineConfig<HasCurve<C>, HasMsmEngine<C, M>> {
pub fn build(self) -> PlonkEngine<C, M> {
PlonkEngine {
msm_backend: self.msm_backend.0,
_marker: Default::default(),
}
}
}
}
// Testing
// ---------------------------------------------------
#[cfg(test)]
mod test {
use crate::zal::impls::{H2cEngine, PlonkEngineConfig};
use crate::zal::traits::MsmAccel;
use halo2curves::bn256::G1Affine;
use halo2curves::msm::msm_best;
use halo2curves::CurveAffine;
use ark_std::{end_timer, start_timer};
use ff::Field;
use group::{Curve, Group};
use rand_core::SeedableRng;
use rand_xorshift::XorShiftRng;
fn gen_points_scalars<C: CurveAffine>(k: usize) -> (Vec<C>, Vec<C::Scalar>) {
let mut rng = XorShiftRng::seed_from_u64(3141592u64);
let points = (0..1 << k)
.map(|_| C::Curve::random(&mut rng))
.collect::<Vec<_>>();
let mut affine_points = vec![C::identity(); 1 << k];
C::Curve::batch_normalize(&points[..], &mut affine_points[..]);
let points = affine_points;
let scalars = (0..1 << k)
.map(|_| C::Scalar::random(&mut rng))
.collect::<Vec<_>>();
(points, scalars)
}
fn run_msm_zal_default<C: CurveAffine>(points: &[C], scalars: &[C::Scalar], k: usize) {
let points = &points[..1 << k];
let scalars = &scalars[..1 << k];
let t0 = start_timer!(|| format!("freestanding msm k={}", k));
let e0 = msm_best(scalars, points);
end_timer!(t0);
let engine = PlonkEngineConfig::build_default::<C>();
let t1 = start_timer!(|| format!("H2cEngine msm k={}", k));
let e1 = engine.msm_backend.msm(scalars, points);
end_timer!(t1);
assert_eq!(e0, e1);
// Caching API
// -----------
let t2 = start_timer!(|| format!("H2cEngine msm cached base k={}", k));
let base_descriptor = engine.msm_backend.get_base_descriptor(points);
let e2 = engine
.msm_backend
.msm_with_cached_base(scalars, &base_descriptor);
end_timer!(t2);
assert_eq!(e0, e2);
let t3 = start_timer!(|| format!("H2cEngine msm cached coeffs k={}", k));
let coeffs_descriptor = engine.msm_backend.get_coeffs_descriptor(scalars);
let e3 = engine
.msm_backend
.msm_with_cached_scalars(&coeffs_descriptor, points);
end_timer!(t3);
assert_eq!(e0, e3);
let t4 = start_timer!(|| format!("H2cEngine msm cached inputs k={}", k));
let e4 = engine
.msm_backend
.msm_with_cached_inputs(&coeffs_descriptor, &base_descriptor);
end_timer!(t4);
assert_eq!(e0, e4);
}
fn run_msm_zal_custom<C: CurveAffine>(points: &[C], scalars: &[C::Scalar], k: usize) {
let points = &points[..1 << k];
let scalars = &scalars[..1 << k];
let t0 = start_timer!(|| format!("freestanding msm k={}", k));
let e0 = msm_best(scalars, points);
end_timer!(t0);
let engine = PlonkEngineConfig::new()
.set_curve::<G1Affine>()
.set_msm(H2cEngine::new())
.build();
let t1 = start_timer!(|| format!("H2cEngine msm k={}", k));
let e1 = engine.msm_backend.msm(scalars, points);
end_timer!(t1);
assert_eq!(e0, e1);
// Caching API
// -----------
let t2 = start_timer!(|| format!("H2cEngine msm cached base k={}", k));
let base_descriptor = engine.msm_backend.get_base_descriptor(points);
let e2 = engine
.msm_backend
.msm_with_cached_base(scalars, &base_descriptor);
end_timer!(t2);
assert_eq!(e0, e2)
}
#[test]
#[ignore]
fn test_performance_h2c_msm_zal() {
let (min_k, max_k) = (3, 14);
let (points, scalars) = gen_points_scalars::<G1Affine>(max_k);
for k in min_k..=max_k {
let points = &points[..1 << k];
let scalars = &scalars[..1 << k];
run_msm_zal_default(points, scalars, k);
run_msm_zal_custom(points, scalars, k);
}
}
#[test]
fn test_msm_zal() {
const MSM_SIZE: usize = 12;
let (points, scalars) = gen_points_scalars::<G1Affine>(MSM_SIZE);
run_msm_zal_default(&points, &scalars, MSM_SIZE);
run_msm_zal_custom(&points, &scalars, MSM_SIZE);
}
}