1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
//! This module contains the CircuitInputBuilder, which is an object that takes
//! types from geth / web3 and outputs the circuit inputs.
mod access;
mod block;
mod call;
mod chunk;
mod execution;
mod input_state_ref;
#[cfg(test)]
mod tracer_tests;
mod transaction;
mod withdrawal;
use self::{access::gen_state_access_trace, chunk::Chunk};
use crate::{
error::Error,
evm::opcodes::{gen_associated_ops, gen_associated_steps},
operation::{
CallContextField, Op, Operation, OperationContainer, PaddingOp, RWCounter, StartOp,
StepStateField, StepStateOp, RW,
},
rpc::GethClient,
state_db::{self, CodeDB, StateDB},
};
pub use access::{Access, AccessSet, AccessValue, CodeSource};
pub use block::{Block, BlockContext};
pub use call::{Call, CallContext, CallKind};
pub use chunk::ChunkContext;
use core::fmt::Debug;
use eth_types::{
self, geth_types,
sign_types::{pk_bytes_le, pk_bytes_swap_endianness, SignData},
Address, GethExecStep, GethExecTrace, ToWord, Word,
};
use ethers_providers::JsonRpcClient;
pub use execution::{
CopyDataType, CopyEvent, CopyStep, ExecState, ExecStep, ExpEvent, ExpStep, NumberOrHash,
PrecompileEvent, PrecompileEvents, N_BYTES_PER_PAIR, N_PAIRING_PER_OP,
};
pub use input_state_ref::CircuitInputStateRef;
use itertools::Itertools;
use log::warn;
use std::{
collections::{HashMap, HashSet},
ops::Deref,
};
pub use transaction::{Transaction, TransactionContext};
pub use withdrawal::{Withdrawal, WithdrawalContext};
/// number of execution state fields
pub const N_EXEC_STATE: usize = 10;
/// Runtime Config
///
/// Default to mainnet block
#[derive(Debug, Clone, Copy)]
pub struct FeatureConfig {
/// Zero difficulty
pub zero_difficulty: bool,
/// Free first transaction
pub free_first_tx: bool,
/// Enable EIP1559
pub enable_eip1559: bool,
/// Allow invalid transactions to be included in a block
///
/// Transactions with mismatched nonce, insufficient gas limit, or insufficient balance
/// shouldn't be included in a mainnet block. However, rollup developers might want to
/// include invalid tx in the L2 block to support forced exit feature.
pub invalid_tx: bool,
}
impl Default for FeatureConfig {
fn default() -> Self {
Self {
zero_difficulty: true,
free_first_tx: false,
enable_eip1559: true,
invalid_tx: false,
}
}
}
impl FeatureConfig {
/// Check if we are mainnet config
pub fn is_mainnet(&self) -> bool {
self.zero_difficulty && !self.free_first_tx && self.enable_eip1559 && !self.invalid_tx
}
}
// RW_BUFFER_SIZE need to set to cover max rwc row contributed by a ExecStep
const RW_BUFFER_SIZE: usize = 30;
/// Circuit Setup Parameters
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct FixedCParams {
///
pub total_chunks: usize,
/// Maximum number of rw operations in the state circuit (RwTable length /
/// number of rows). This must be at least the number of rw operations
/// + 1, in order to allocate at least a Start row.
pub max_rws: usize,
// TODO: evm_rows: Maximum number of rows in the EVM Circuit
/// Maximum number of txs in the Tx Circuit
pub max_txs: usize,
/// Maximum number of withdrawals in the Withdrawal Circuit
pub max_withdrawals: usize,
/// Maximum number of bytes from all txs calldata in the Tx Circuit
pub max_calldata: usize,
/// Max amount of rows that the CopyCircuit can have.
pub max_copy_rows: usize,
/// Max number of steps that the ExpCircuit can have. Each step is further
/// expressed in 7 rows
pub max_exp_steps: usize,
/// Maximum number of bytes supported in the Bytecode Circuit
pub max_bytecode: usize,
/// Pad evm circuit number of rows.
/// When 0, the EVM circuit number of rows will be dynamically calculated,
/// so the same circuit will not be able to proof different witnesses.
/// In this case it will contain as many rows for all steps + 1 row
/// for EndBlock.
pub max_evm_rows: usize,
/// Pad the keccak circuit with this number of invocations to a static
/// capacity. Number of keccak_f that the Keccak circuit will support.
/// When 0, the Keccak circuit number of rows will be dynamically
/// calculated, so the same circuit will not be able to prove different
/// witnesses.
pub max_keccak_rows: usize,
/// This number indicate what 100% usage means, for example if we can support up to 2
/// ecPairing inside circuit, and max_vertical_circuit_rows is set to 1_000_000,
/// then if there is 1 ecPairing in the input, we will return 500_000 as the "row usage"
/// for the ec circuit.
pub max_vertical_circuit_rows: usize,
}
/// Unset Circuits Parameters
///
/// To reduce the testing overhead, we determine the parameters by the testing inputs.
/// A new [`FixedCParams`] will be computed from the generated circuit witness.
#[derive(Debug, Clone, Copy)]
pub struct DynamicCParams {
/// Toatal number of chunks
pub total_chunks: usize,
}
/// Circuit Setup Parameters. These can be fixed/concrete or unset/dynamic.
pub trait CircuitsParams: Debug + Copy {
/// Return the total number of chunks
fn total_chunks(&self) -> usize;
/// Set total number of chunks
fn set_total_chunk(&mut self, total_chunks: usize);
/// Return the maximum Rw
fn max_rws(&self) -> Option<usize>;
}
impl CircuitsParams for FixedCParams {
fn total_chunks(&self) -> usize {
self.total_chunks
}
fn set_total_chunk(&mut self, total_chunks: usize) {
self.total_chunks = total_chunks;
}
fn max_rws(&self) -> Option<usize> {
Some(self.max_rws)
}
}
impl CircuitsParams for DynamicCParams {
fn total_chunks(&self) -> usize {
self.total_chunks
}
fn set_total_chunk(&mut self, total_chunks: usize) {
self.total_chunks = total_chunks;
}
fn max_rws(&self) -> Option<usize> {
None
}
}
impl Default for DynamicCParams {
fn default() -> Self {
DynamicCParams { total_chunks: 1 }
}
}
impl Default for FixedCParams {
/// Default values for most of the unit tests of the Circuit Parameters
fn default() -> Self {
FixedCParams {
total_chunks: 1,
max_rws: 1000,
max_txs: 1,
max_withdrawals: 1,
max_calldata: 256,
// TODO: Check whether this value is correct or we should increase/decrease based on
// this lib tests
max_copy_rows: 1000,
max_exp_steps: 1000 / 7, // exp_circuit::OFFSET_INCREMENT = 7
max_bytecode: 512,
max_evm_rows: 0,
max_keccak_rows: 0,
max_vertical_circuit_rows: 0,
}
}
}
/// Builder to generate a complete circuit input from data gathered from a geth
/// instance. This structure is the centre of the crate and is intended to be
/// the only entry point to it. The `CircuitInputBuilder` works in several
/// steps:
///
/// 1. Take a [`eth_types::Block`] to build the circuit input associated with
/// the block. 2. For each [`eth_types::Transaction`] in the block, take the
/// [`eth_types::GethExecTrace`] to build the circuit input associated with
/// each transaction, and the bus-mapping operations associated with each
/// [`eth_types::GethExecStep`] in the [`eth_types::GethExecTrace`]. 3. If `Rw`s
/// generated during Transactions exceed the `max_rws` threshold, separate witness
/// into multiple chunks.
///
/// The generated bus-mapping operations are:
/// [`StackOp`](crate::operation::StackOp)s,
/// [`MemoryOp`](crate::operation::MemoryOp)s and
/// [`StorageOp`](crate::operation::StorageOp), which correspond to each
/// [`OpcodeId`](crate::evm::OpcodeId)s used in each `ExecTrace` step so that
/// the State Proof witnesses are already generated on a structured manner and
/// ready to be added into the State circuit.
#[derive(Debug, Clone)]
pub struct CircuitInputBuilder<C: CircuitsParams> {
/// StateDB key-value DB
pub sdb: StateDB,
/// Map of account codes by code hash
pub code_db: CodeDB,
/// Block
pub block: Block,
/// Chunk
pub chunks: Vec<Chunk>,
/// Block Context
pub block_ctx: BlockContext,
/// Chunk Context
pub chunk_ctx: ChunkContext,
/// Circuits Setup Parameters before chunking
pub circuits_params: C,
/// Feature config
pub feature_config: FeatureConfig,
}
impl<'a, C: CircuitsParams> CircuitInputBuilder<C> {
/// Create a new CircuitInputBuilder from the given `eth_block` and
/// `constants`.
pub fn new(
sdb: StateDB,
code_db: CodeDB,
block: Block,
params: C,
feature_config: FeatureConfig,
) -> Self {
let total_chunks = params.total_chunks();
let chunks = vec![Chunk::default(); total_chunks];
Self {
sdb,
code_db,
block,
chunks,
block_ctx: BlockContext::new(),
chunk_ctx: ChunkContext::new(total_chunks),
circuits_params: params,
feature_config,
}
}
/// Set the total number of chunks for existing CircuitInputBuilder,
/// API for chunking the existing tests then run with a specific chunk
pub fn set_total_chunk(&mut self, total_chunks: usize) {
self.circuits_params.set_total_chunk(total_chunks);
self.chunks = vec![Chunk::default(); total_chunks];
self.chunk_ctx.total_chunks = total_chunks;
}
/// Obtain a mutable reference to the state that the `CircuitInputBuilder`
/// maintains, contextualized to a particular transaction and a
/// particular execution step in that transaction.
pub fn state_ref(
&'a mut self,
tx: &'a mut Transaction,
tx_ctx: &'a mut TransactionContext,
) -> CircuitInputStateRef {
CircuitInputStateRef {
sdb: &mut self.sdb,
code_db: &mut self.code_db,
block: &mut self.block,
block_ctx: &mut self.block_ctx,
chunk_ctx: &mut self.chunk_ctx,
tx,
tx_ctx,
max_rws: self.circuits_params.max_rws(),
}
}
/// Create a new Transaction from a [`eth_types::Transaction`].
pub fn new_tx(
&mut self,
id: u64,
eth_tx: ð_types::Transaction,
is_success: bool,
) -> Result<Transaction, Error> {
let call_id = self.block_ctx.rwc.0;
self.block_ctx.call_map.insert(
call_id,
(
eth_tx
.transaction_index
.ok_or(Error::EthTypeError(eth_types::Error::IncompleteBlock))?
.as_u64() as usize,
0,
),
);
Transaction::new(
id,
call_id,
&self.sdb,
&mut self.code_db,
eth_tx,
is_success,
)
}
/// Iterate over all generated CallContext RwCounterEndOfReversion
/// operations and set the correct value. This is required because when we
/// generate the RwCounterEndOfReversion operation in
/// `gen_associated_ops` we don't know yet which value it will take,
/// so we put a placeholder; so we do it here after the values are known.
pub fn set_value_ops_call_context_rwc_eor(&mut self) {
for oper in self.block.container.call_context.iter_mut() {
let op = oper.op_mut();
if matches!(op.field, CallContextField::RwCounterEndOfReversion) {
let (tx_idx, call_idx) = self
.block_ctx
.call_map
.get(&op.call_id)
.expect("call_id not found in call_map");
op.value = self.block.txs[*tx_idx].calls()[*call_idx]
.rw_counter_end_of_reversion
.into();
}
}
}
// chunking and mutable bumping chunk_ctx once condition match
// return true on bumping to next chunk
fn check_and_chunk(
&mut self,
geth_trace: &GethExecTrace,
tx: Transaction,
tx_ctx: TransactionContext,
next_geth_step: Option<(usize, &GethExecStep)>,
last_call: Option<Call>,
) -> Result<bool, Error> {
// we dont chunk if
// 1. on last chunk
// 2. still got some buffer room before max_rws
let Some(max_rws) = self.circuits_params.max_rws() else {
// terminiate earlier due to no max_rws
return Ok(false);
};
if self.chunk_ctx.is_last_chunk() || self.chunk_rws() + RW_BUFFER_SIZE < max_rws {
return Ok(false);
};
// Obtain the first op of the next GethExecStep, for fixed case also lookahead
let (mut cib, mut tx, mut tx_ctx) = (self.clone(), tx, tx_ctx);
let mut cib_ref = cib.state_ref(&mut tx, &mut tx_ctx);
let mut next_ops = if let Some((i, step)) = next_geth_step {
log::trace!("chunk at {}th opcode {:?} ", i, step.op);
gen_associated_ops(&step.op, &mut cib_ref, &geth_trace.struct_logs[i..])?.remove(0)
} else {
log::trace!("chunk at EndTx");
gen_associated_steps(&mut cib_ref, ExecState::EndTx)?
};
let last_copy = self.block.copy_events.len();
// Generate EndChunk and proceed to the next if it's not the last chunk
// Set next step pre-state as end_chunk state
self.set_end_chunk(&next_ops, Some(&tx));
// need to update next_ops.rwc to catch block_ctx.rwc in `set_end_chunk`
next_ops.rwc = self.block_ctx.rwc;
// tx.id start from 1, so it's equivalent to `next_tx_index`
self.commit_chunk_ctx(true, tx.id as usize, last_copy, last_call);
self.set_begin_chunk(&next_ops, Some(&tx));
Ok(true)
}
/// Handle a transaction with its corresponding execution trace to generate
/// all the associated operations. Each operation is registered in
/// `self.block.container`, and each step stores the
/// [`OperationRef`](crate::exec_trace::OperationRef) to each of the
/// generated operations.
/// When dynamic builder handles Tx with is_chunked = false, we don't chunk
/// When fixed builder handles Tx with is_chunked = true, we chunk
fn handle_tx(
&mut self,
eth_tx: ð_types::Transaction,
geth_trace: &GethExecTrace,
is_last_tx: bool,
tx_index: u64,
) -> Result<(ExecStep, Option<Call>), Error> {
let mut tx = self.new_tx(tx_index, eth_tx, !geth_trace.failed)?;
let mut tx_ctx = TransactionContext::new(eth_tx, geth_trace, is_last_tx)?;
let res = if !geth_trace.invalid {
// Generate BeginTx step
let begin_tx_step = gen_associated_steps(
&mut self.state_ref(&mut tx, &mut tx_ctx),
ExecState::BeginTx,
)?;
let mut last_call = Some(tx.calls().get(begin_tx_step.call_index).unwrap().clone());
tx.steps_mut().push(begin_tx_step);
let mut trace = geth_trace.struct_logs.iter().enumerate().peekable();
while let Some((peek_i, peek_step)) = trace.peek() {
// Check the peek step and chunk if needed
self.check_and_chunk(
geth_trace,
tx.clone(),
tx_ctx.clone(),
Some((*peek_i, peek_step)),
last_call.clone(),
)?;
// Proceed to the next step
let (i, step) = trace.next().expect("Peeked step should exist");
log::trace!(
"handle {}th opcode {:?} {:?} rws = {:?}",
i,
step.op,
step,
self.chunk_rws()
);
let exec_steps = gen_associated_ops(
&step.op,
&mut self.state_ref(&mut tx, &mut tx_ctx),
&geth_trace.struct_logs[i..],
)?;
last_call = exec_steps
.last()
.map(|step| tx.calls().get(step.call_index).unwrap().clone());
tx.steps_mut().extend(exec_steps);
}
// Peek the end_tx_step
self.check_and_chunk(
geth_trace,
tx.clone(),
tx_ctx.clone(),
None,
last_call.clone(),
)?;
// Generate EndTx step
let end_tx_step =
gen_associated_steps(&mut self.state_ref(&mut tx, &mut tx_ctx), ExecState::EndTx)?;
self.sdb.clear_transient_storage();
tx.steps_mut().push(end_tx_step.clone());
(end_tx_step, last_call)
} else if self.feature_config.invalid_tx {
// Generate InvalidTx step
let invalid_tx_step = gen_associated_steps(
&mut self.state_ref(&mut tx, &mut tx_ctx),
ExecState::InvalidTx,
)?;
tx.steps_mut().push(invalid_tx_step.clone());
// Peek the end_tx_step
let is_chunk =
self.check_and_chunk(geth_trace, tx.clone(), tx_ctx.clone(), None, None)?;
if is_chunk {
// TODO we dont support chunk after invalid_tx
// because begin_chunk will constraints what next step execution state.
// And for next step either begin_tx or invalid_tx will both failed because
// begin_tx/invalid_tx define new execution state.
unimplemented!("dont support invalid_tx with multiple chunks")
}
(invalid_tx_step, None)
} else {
panic!("invalid tx support not enabled")
};
self.sdb.commit_tx();
self.block.txs.push(tx);
Ok(res)
}
// generate chunk related steps
fn gen_chunk_associated_steps(
&mut self,
step: &mut ExecStep,
rw: RW,
tx: Option<&Transaction>,
) {
let mut dummy_tx = Transaction::default();
let mut dummy_tx_ctx = TransactionContext::default();
let rw_counters = (0..N_EXEC_STATE)
.map(|_| self.block_ctx.rwc.inc_pre())
.collect::<Vec<RWCounter>>();
// just bump rwc in chunk_ctx as block_ctx rwc to assure same delta apply
let rw_counters_inner_chunk = (0..N_EXEC_STATE)
.map(|_| self.chunk_ctx.rwc.inc_pre())
.collect::<Vec<RWCounter>>();
let tags = {
let state = self.state_ref(&mut dummy_tx, &mut dummy_tx_ctx);
let last_call = tx
.map(|tx| tx.calls()[step.call_index].clone())
.or_else(|| state.block.txs.last().map(|tx| tx.calls[0].clone()))
.unwrap();
[
(StepStateField::CodeHash, last_call.code_hash.to_word()),
(StepStateField::CallID, Word::from(last_call.call_id)),
(StepStateField::IsRoot, Word::from(last_call.is_root as u64)),
(
StepStateField::IsCreate,
Word::from(last_call.is_create() as u64),
),
(StepStateField::ProgramCounter, Word::from(step.pc)),
(
StepStateField::StackPointer,
Word::from(step.stack_pointer()),
),
(StepStateField::GasLeft, Word::from(step.gas_left)),
(
StepStateField::MemoryWordSize,
Word::from(step.memory_word_size()),
),
(
StepStateField::ReversibleWriteCounter,
Word::from(step.reversible_write_counter),
),
(StepStateField::LogID, Word::from(step.log_id)),
]
};
debug_assert_eq!(N_EXEC_STATE, tags.len());
let state = self.state_ref(&mut dummy_tx, &mut dummy_tx_ctx);
tags.iter()
.zip_eq(rw_counters)
.zip_eq(rw_counters_inner_chunk)
.for_each(|(((tag, value), rw_counter), inner_rw_counter)| {
push_op(
&mut state.block.container,
step,
rw_counter,
inner_rw_counter,
rw,
StepStateOp {
field: tag.clone(),
value: *value,
},
);
});
}
/// Set the end status of a chunk including the current globle rwc
/// and commit the current chunk context, proceed to the next chunk
/// if needed
pub fn commit_chunk_ctx(
&mut self,
to_next: bool,
next_tx_index: usize,
next_copy_index: usize,
last_call: Option<Call>,
) {
self.chunk_ctx.end_rwc = self.block_ctx.rwc.0;
self.chunk_ctx.end_tx_index = next_tx_index;
self.chunk_ctx.end_copy_index = next_copy_index;
self.cur_chunk_mut().ctx = self.chunk_ctx.clone();
if to_next {
// add `-1` to include previous set and deal with transaction cross-chunk case
self.chunk_ctx
.bump(self.block_ctx.rwc.0, next_tx_index - 1, next_copy_index);
self.cur_chunk_mut().prev_last_call = last_call;
}
}
fn set_begin_chunk(&mut self, first_step: &ExecStep, tx: Option<&Transaction>) {
let mut begin_chunk = ExecStep {
exec_state: ExecState::BeginChunk,
rwc: first_step.rwc,
gas_left: first_step.gas_left,
call_index: first_step.call_index,
..ExecStep::default()
};
self.gen_chunk_associated_steps(&mut begin_chunk, RW::READ, tx);
self.chunks[self.chunk_ctx.idx].begin_chunk = Some(begin_chunk);
}
fn set_end_chunk(&mut self, next_step: &ExecStep, tx: Option<&Transaction>) {
let mut end_chunk = ExecStep {
exec_state: ExecState::EndChunk,
rwc: next_step.rwc,
rwc_inner_chunk: next_step.rwc_inner_chunk,
gas_left: next_step.gas_left,
call_index: next_step.call_index,
..ExecStep::default()
};
self.gen_chunk_associated_steps(&mut end_chunk, RW::WRITE, tx);
self.gen_chunk_padding(&mut end_chunk);
self.chunks[self.chunk_ctx.idx].end_chunk = Some(end_chunk);
}
fn gen_chunk_padding(&mut self, step: &mut ExecStep) {
// rwc index start from 1
let end_rwc = self.chunk_ctx.rwc.0;
let total_rws = end_rwc - 1;
let max_rws = self.cur_chunk().fixed_param.max_rws;
assert!(
total_rws < max_rws,
"total_rws <= max_rws, total_rws={}, max_rws={}",
total_rws,
max_rws
);
let mut padding = step.clone();
padding.exec_state = ExecState::Padding;
padding.bus_mapping_instance = vec![]; // there is no rw in padding step
if self.chunk_ctx.is_first_chunk() {
push_op(
&mut self.block.container,
step,
RWCounter(1),
RWCounter(1),
RW::READ,
StartOp {},
);
}
if max_rws - total_rws > 1 {
let (padding_start, padding_end) = (total_rws + 1, max_rws - 1);
push_op(
&mut self.block.container,
step,
RWCounter(padding_start),
RWCounter(padding_start),
RW::READ,
PaddingOp {},
);
if padding_end != padding_start {
push_op(
&mut self.block.container,
step,
RWCounter(padding_end),
RWCounter(padding_end),
RW::READ,
PaddingOp {},
);
}
}
self.chunks[self.chunk_ctx.idx].padding = Some(padding);
}
/// Get the i-th mutable chunk
pub fn get_chunk_mut(&mut self, i: usize) -> &mut Chunk {
self.chunks.get_mut(i).expect("Chunk does not exist")
}
/// Get the i-th chunk
pub fn get_chunk(&self, i: usize) -> Chunk {
self.chunks.get(i).expect("Chunk does not exist").clone()
}
/// Get the current chunk
pub fn cur_chunk(&self) -> Chunk {
self.chunks[self.chunk_ctx.idx].clone()
}
/// Get a mutable reference of current chunk
pub fn cur_chunk_mut(&mut self) -> &mut Chunk {
&mut self.chunks[self.chunk_ctx.idx]
}
/// Get the previous chunk
pub fn prev_chunk(&self) -> Option<Chunk> {
if self.chunk_ctx.idx == 0 {
return None;
}
self.chunks.get(self.chunk_ctx.idx - 1).cloned()
}
/// Total Rw in this chunk
pub fn chunk_rws(&self) -> usize {
self.chunk_ctx.rwc.0 - 1
}
}
impl CircuitInputBuilder<FixedCParams> {
/// First part of handle_block, only called by fixed Builder
pub fn begin_handle_block(
&mut self,
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<(Option<ExecStep>, Option<Call>), Error> {
assert!(
self.circuits_params.max_rws().unwrap_or_default() > self.last_exec_step_rws_reserved(),
"Fixed max_rws not enough for rws reserve"
);
// accumulates gas across all txs in the block
let mut res = eth_block
.transactions
.iter()
.enumerate()
.map(|(idx, tx)| {
let geth_trace = &geth_traces[idx];
// Transaction index starts from 1
let tx_id = idx + 1;
self.handle_tx(
tx,
geth_trace,
tx_id == eth_block.transactions.len(),
tx_id as u64,
)
.map(|(exec_step, last_call)| (Some(exec_step), last_call))
})
.collect::<Result<Vec<(Option<ExecStep>, Option<Call>)>, _>>()?;
// set eth_block
self.block.eth_block = eth_block.clone();
self.set_value_ops_call_context_rwc_eor();
if !res.is_empty() {
Ok(res.remove(res.len() - 1))
} else {
Ok((None, None))
}
}
/// Handle a block by handling each transaction to generate all the
/// associated operations.
pub fn handle_block(
mut self,
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<CircuitInputBuilder<FixedCParams>, Error> {
// accumulates gas across all txs in the block
let (last_step, last_call) = self.begin_handle_block(eth_block, geth_traces)?;
// since there is no next step, we cook dummy next step from last step to reuse
// existing field while update its `rwc`.
let mut dummy_next_step = {
let mut dummy_next_step = last_step.unwrap_or_default();
// raise last step rwc to match with next step
(0..dummy_next_step.rw_indices_len()).for_each(|_| {
dummy_next_step.rwc.inc_pre();
dummy_next_step.rwc_inner_chunk.inc_pre();
});
dummy_next_step
};
assert!(self.circuits_params.max_rws().is_some());
let last_copy = self.block.copy_events.len();
// TODO figure out and resolve generic param type and move fixed_param set inside
// commit_chunk_ctx. After fixed, then we can set fixed_param on all chunks
(0..self.circuits_params.total_chunks()).for_each(|idx| {
self.get_chunk_mut(idx).fixed_param = self.circuits_params;
});
// We fill dummy virtual steps: BeginChunk,EndChunk for redundant chunks
let last_process_chunk_id = self.chunk_ctx.idx;
(last_process_chunk_id..self.circuits_params.total_chunks()).try_for_each(|idx| {
if idx == self.circuits_params.total_chunks() - 1 {
self.set_end_block()?;
self.commit_chunk_ctx(
false,
eth_block.transactions.len(),
last_copy,
last_call.clone(),
);
} else {
self.set_end_chunk(&dummy_next_step, None);
self.commit_chunk_ctx(
true,
eth_block.transactions.len(),
last_copy,
last_call.clone(),
);
// update dummy_next_step rwc to be used for next
dummy_next_step.rwc = self.block_ctx.rwc;
dummy_next_step.rwc_inner_chunk = self.chunk_ctx.rwc;
self.set_begin_chunk(&dummy_next_step, None);
dummy_next_step.rwc = self.block_ctx.rwc;
dummy_next_step.rwc_inner_chunk = self.chunk_ctx.rwc;
// update virtual step: end_block/padding so it can carry state context correctly
// TODO: enhance virtual step updating mechanism by having `running_next_step`
// defined in circuit_input_builder, so we dont need to
self.block.end_block = dummy_next_step.clone();
self.cur_chunk_mut().padding = {
let mut padding = dummy_next_step.clone();
padding.exec_state = ExecState::Padding;
Some(padding)
};
}
Ok::<(), Error>(())
})?;
let used_chunks = self.chunk_ctx.idx + 1;
assert!(
used_chunks <= self.circuits_params.total_chunks(),
"Used more chunks than given total_chunks"
);
assert!(
self.chunks.len() == self.chunk_ctx.idx + 1,
"number of chunks {} miss-match with chunk_ctx id {}",
self.chunks.len(),
self.chunk_ctx.idx + 1,
);
// Truncate chunks to the actual used amount & correct ctx.total_chunks
// Set length to the actual used amount of chunks
self.chunks.truncate(self.chunk_ctx.idx + 1);
self.chunks.iter_mut().for_each(|chunk| {
chunk.ctx.total_chunks = used_chunks;
});
Ok(self)
}
fn set_end_block(&mut self) -> Result<(), Error> {
let mut end_block = self.block.end_block.clone();
end_block.rwc = self.block_ctx.rwc;
end_block.exec_state = ExecState::EndBlock;
end_block.rwc_inner_chunk = self.chunk_ctx.rwc;
let mut dummy_tx = Transaction::default();
let mut dummy_tx_ctx = TransactionContext::default();
let mut state = self.state_ref(&mut dummy_tx, &mut dummy_tx_ctx);
if let Some(call_id) = state.block.txs.last().map(|tx| tx.calls[0].call_id) {
state.call_context_read(
&mut end_block,
call_id,
CallContextField::TxId,
Word::from(state.block.txs.len() as u64),
)?;
}
// EndBlock step should also be padded to max_rws similar to EndChunk
self.gen_chunk_padding(&mut end_block);
self.block.end_block = end_block;
Ok(())
}
}
fn push_op<T: Op>(
container: &mut OperationContainer,
step: &mut ExecStep,
rwc: RWCounter,
rwc_inner_chunk: RWCounter,
rw: RW,
op: T,
) {
let op_ref = container.insert(Operation::new(rwc, rwc_inner_chunk, rw, op));
step.bus_mapping_instance.push(op_ref);
}
impl<C: CircuitsParams> CircuitInputBuilder<C> {
/// return the rw row reserved for end_block/end_chunk
pub fn last_exec_step_rws_reserved(&self) -> usize {
// rw ops reserved for EndBlock
let end_block_rws = if self.chunk_ctx.is_last_chunk() && self.chunk_rws() > 0 {
1
} else {
0
};
// rw ops reserved for EndChunk
let end_chunk_rws = if !self.chunk_ctx.is_last_chunk() {
N_EXEC_STATE
} else {
0
};
end_block_rws + end_chunk_rws + 1
}
fn compute_param(&self, eth_block: &EthBlock) -> FixedCParams {
let max_txs = eth_block.transactions.len();
let max_withdrawals = eth_block.withdrawals.as_ref().unwrap().len();
let max_bytecode = self.code_db.num_rows_required_for_bytecode_table();
let max_calldata = eth_block
.transactions
.iter()
.fold(0, |acc, tx| acc + tx.input.len());
let max_exp_steps = self
.block
.exp_events
.iter()
.fold(0usize, |acc, e| acc + e.steps.len());
// The `+ 2` is used to take into account the two extra empty copy rows needed
// to satisfy the query at `Rotation(2)` performed inside of the
// `rows[2].value == rows[0].value * r + rows[1].value` requirement in the RLC
// Accumulation gate.
let max_copy_rows = self
.block
.copy_events
.iter()
.fold(0, |acc, c| acc + c.bytes.len())
* 2
+ 4; // disabled and unused rows.
let max_rws = <RWCounter as Into<usize>>::into(self.block_ctx.rwc) - 1
+ self.last_exec_step_rws_reserved();
// Computing the number of rows for the EVM circuit requires the size of ExecStep,
// which is determined in the code of zkevm-circuits and cannot be imported here.
// When the evm circuit receives a 0 value it dynamically computes the minimum
// number of rows necessary.
let max_evm_rows = 0;
// Similarly, computing the number of rows for the Keccak circuit requires
// constants that cannot be accessed from here (NUM_ROUNDS and KECCAK_ROWS).
// With a 0 value the keccak circuit computes dynamically the minimum number of rows
// needed.
let max_keccak_rows = 0;
FixedCParams {
total_chunks: self.circuits_params.total_chunks(),
max_rws,
max_txs,
max_withdrawals,
max_calldata,
max_copy_rows,
max_exp_steps,
max_bytecode,
max_evm_rows,
max_keccak_rows,
max_vertical_circuit_rows: 0,
}
}
}
impl CircuitInputBuilder<DynamicCParams> {
fn dry_run(
&self,
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<CircuitInputBuilder<DynamicCParams>, Error> {
let mut cib = self.clone();
cib.circuits_params.total_chunks = 1;
cib.chunk_ctx.total_chunks = 1;
// accumulates gas across all txs in the block
for (idx, tx) in eth_block.transactions.iter().enumerate() {
let geth_trace = &geth_traces[idx];
// Transaction index starts from 1
let tx_id = idx + 1;
cib.handle_tx(
tx,
geth_trace,
tx_id == eth_block.transactions.len(),
tx_id as u64,
)?;
}
// set eth_block
cib.block.eth_block = eth_block.clone();
cib.set_value_ops_call_context_rwc_eor();
debug_assert!(
cib.chunk_ctx.idx == 0,
"processing {} > 1 chunk",
cib.chunk_ctx.idx
); // dry run mode only one chunk
Ok(cib)
}
/// Handle a block by handling each transaction to generate all the
/// associated operations. Dry run the block to determined the target
/// [`FixedCParams`] from to total number of chunks.
pub fn handle_block(
self,
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<CircuitInputBuilder<FixedCParams>, Error> {
// Run the block without chunking and compute the blockwise params
let mut target_params = self
.dry_run(eth_block, geth_traces)
.expect("Dry run failure")
.compute_param(eth_block);
// Calculate the chunkwise params from total number of chunks
let total_chunks = self.circuits_params.total_chunks;
target_params.total_chunks = total_chunks;
// count rws buffer here to left some space for extra virtual steps
target_params.max_rws = (target_params.max_rws + 1) / total_chunks + RW_BUFFER_SIZE;
// Use a new builder with targeted params to handle the block
// chunking context is set to dynamic so for the actual param is update per chunk
let cib = CircuitInputBuilder::<FixedCParams> {
sdb: self.sdb,
code_db: self.code_db,
block: self.block,
chunks: self.chunks,
block_ctx: self.block_ctx,
chunk_ctx: ChunkContext::new(total_chunks),
circuits_params: target_params,
feature_config: self.feature_config,
};
cib.handle_block(eth_block, geth_traces)
}
}
/// Return all the keccak inputs used during the processing of the current
/// block.
pub fn keccak_inputs(block: &Block, code_db: &CodeDB) -> Result<Vec<Vec<u8>>, Error> {
let mut keccak_inputs: HashSet<Vec<u8>> = HashSet::new();
// Tx Circuit
let txs: Vec<geth_types::Transaction> = block.txs.iter().map(|tx| tx.deref().clone()).collect();
for input in keccak_inputs_tx_circuit(&txs, block.chain_id.as_u64())? {
keccak_inputs.insert(input);
}
// Bytecode Circuit
for bytecode in code_db.clone().into_iter() {
keccak_inputs.insert(bytecode.code());
}
// EVM Circuit
for input in &block.sha3_inputs {
keccak_inputs.insert(input.clone());
}
// MPT Circuit
// TODO https://github.com/privacy-scaling-explorations/zkevm-circuits/issues/696
Ok(keccak_inputs.into_iter().collect_vec())
}
/// Generate the keccak inputs required by the SignVerify Chip from the
/// signature data.
pub fn keccak_inputs_sign_verify(sigs: &[SignData]) -> Vec<Vec<u8>> {
let mut inputs = Vec::new();
for sig in sigs {
let pk_le = pk_bytes_le(&sig.pk);
let pk_be = pk_bytes_swap_endianness(&pk_le);
inputs.push(pk_be.to_vec());
}
// Padding signature
let pk_le = pk_bytes_le(&SignData::default().pk);
let pk_be = pk_bytes_swap_endianness(&pk_le);
inputs.push(pk_be.to_vec());
inputs
}
/// Generate the keccak inputs required by the Tx Circuit from the transactions.
pub fn keccak_inputs_tx_circuit(
txs: &[geth_types::Transaction],
chain_id: u64,
) -> Result<Vec<Vec<u8>>, Error> {
let mut inputs = Vec::new();
let sign_data: Vec<SignData> = txs
.iter()
.enumerate()
.filter(|(i, tx)| {
if tx.v == 0 && tx.r.is_zero() && tx.s.is_zero() {
warn!("tx {} is not signed, skipping tx circuit keccak input", i);
false
} else {
true
}
})
.map(|(_, tx)| tx.sign_data(chain_id))
.try_collect()?;
// Keccak inputs from SignVerify Chip
let sign_verify_inputs = keccak_inputs_sign_verify(&sign_data);
inputs.extend_from_slice(&sign_verify_inputs);
// NOTE: We don't verify the Tx Hash in the circuit yet, so we don't have more
// hash inputs.
Ok(inputs)
}
/// Retrieve the init_code from memory for {CREATE, CREATE2}
pub fn get_create_init_code(call_ctx: &CallContext, step: &GethExecStep) -> Result<Vec<u8>, Error> {
let offset = step.stack.nth_last(1)?.low_u64() as usize;
let length = step.stack.nth_last(2)?.as_usize();
let mem_len = call_ctx.memory.0.len();
let mut result = vec![0u8; length];
if length > 0 && offset < mem_len {
let offset_end = offset
.checked_add(length)
.expect("overflow should be handled using OOG error")
.min(mem_len);
let copy_len = offset_end - offset;
result[..copy_len].copy_from_slice(&call_ctx.memory.0[offset..offset_end]);
}
Ok(result)
}
/// Retrieve the memory offset and length of call.
pub fn get_call_memory_offset_length(step: &GethExecStep, nth: usize) -> Result<(u64, u64), Error> {
let offset = step.stack.nth_last(nth)?;
let length = step.stack.nth_last(nth + 1)?;
if length.is_zero() {
Ok((0, 0))
} else {
Ok((offset.low_u64(), length.low_u64()))
}
}
type EthBlock = eth_types::Block<eth_types::Transaction>;
/// Struct that wraps a GethClient and contains methods to perform all the steps
/// necessary to generate the circuit inputs for a block by querying geth for
/// the necessary information and using the CircuitInputBuilder.
pub struct BuilderClient<P: JsonRpcClient> {
cli: GethClient<P>,
chain_id: Word,
circuits_params: FixedCParams,
feature_config: FeatureConfig,
}
/// Get State Accesses from TxExecTraces
pub fn get_state_accesses(
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<AccessSet, Error> {
let mut block_access_trace = vec![Access::new(
None,
RW::WRITE,
AccessValue::Account {
address: eth_block
.author
.ok_or(Error::EthTypeError(eth_types::Error::IncompleteBlock))?,
},
)];
for (tx_index, tx) in eth_block.transactions.iter().enumerate() {
let geth_trace = &geth_traces[tx_index];
let tx_access_trace = gen_state_access_trace(eth_block, tx, geth_trace)?;
block_access_trace.extend(tx_access_trace);
}
Ok(AccessSet::from(block_access_trace))
}
/// Build a partial StateDB from step 3
pub fn build_state_code_db(
proofs: Vec<eth_types::EIP1186ProofResponse>,
codes: HashMap<Address, Vec<u8>>,
) -> (StateDB, CodeDB) {
let mut sdb = StateDB::new();
for proof in proofs {
let mut storage = HashMap::new();
for storage_proof in proof.storage_proof {
storage.insert(storage_proof.key, storage_proof.value);
}
sdb.set_account(
&proof.address,
state_db::Account {
nonce: proof.nonce.as_u64(),
balance: proof.balance,
storage,
code_hash: proof.code_hash,
},
)
}
let mut code_db = CodeDB::default();
for (_address, code) in codes {
code_db.insert(code.clone());
}
(sdb, code_db)
}
impl<P: JsonRpcClient> BuilderClient<P> {
/// Create a new BuilderClient
pub async fn new(client: GethClient<P>, circuits_params: FixedCParams) -> Result<Self, Error> {
Self::new_with_features(client, circuits_params, FeatureConfig::default()).await
}
/// Create a new BuilderClient
pub async fn new_with_features(
client: GethClient<P>,
circuits_params: FixedCParams,
feature_config: FeatureConfig,
) -> Result<Self, Error> {
let chain_id = client.get_chain_id().await?;
Ok(Self {
cli: client,
chain_id: chain_id.into(),
circuits_params,
feature_config,
})
}
/// Step 1. Query geth for Block, Txs, TxExecTraces, history block hashes
/// and previous state root.
pub async fn get_block(
&self,
block_num: u64,
) -> Result<(EthBlock, Vec<eth_types::GethExecTrace>, Vec<Word>, Word), Error> {
let eth_block = self.cli.get_block_by_number(block_num.into()).await?;
let geth_traces = self.cli.trace_block_by_number(block_num.into()).await?;
// fetch up to 256 blocks
let mut n_blocks = std::cmp::min(256, block_num as usize);
let mut next_hash = eth_block.parent_hash;
let mut prev_state_root: Option<Word> = None;
let mut history_hashes = vec![Word::default(); n_blocks];
while n_blocks > 0 {
n_blocks -= 1;
// TODO: consider replacing it with `eth_getHeaderByHash`, it's faster
let header = self.cli.get_block_by_hash(next_hash).await?;
// set the previous state root
if prev_state_root.is_none() {
prev_state_root = Some(header.state_root.to_word());
}
// latest block hash is the last item
let block_hash = header
.hash
.ok_or(Error::EthTypeError(eth_types::Error::IncompleteBlock))?
.to_word();
history_hashes[n_blocks] = block_hash;
// continue
next_hash = header.parent_hash;
}
Ok((
eth_block,
geth_traces,
history_hashes,
prev_state_root.unwrap_or_default(),
))
}
/// Step 2. Get State Accesses from TxExecTraces
pub fn get_state_accesses(
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
) -> Result<AccessSet, Error> {
get_state_accesses(eth_block, geth_traces)
}
/// Step 3. Query geth for all accounts, storage keys, and codes from
/// Accesses
pub async fn get_state(
&self,
block_num: u64,
access_set: AccessSet,
) -> Result<
(
Vec<eth_types::EIP1186ProofResponse>,
HashMap<Address, Vec<u8>>,
),
Error,
> {
let mut proofs = Vec::new();
for (address, key_set) in access_set.state {
let mut keys: Vec<Word> = key_set.iter().cloned().collect();
keys.sort();
let proof = self
.cli
.get_proof(address, keys, (block_num - 1).into())
.await
.unwrap();
proofs.push(proof);
}
let mut codes: HashMap<Address, Vec<u8>> = HashMap::new();
for address in access_set.code {
let code = self
.cli
.get_code(address, (block_num - 1).into())
.await
.unwrap();
codes.insert(address, code);
}
Ok((proofs, codes))
}
/// Step 4. Build a partial StateDB from step 3
pub fn build_state_code_db(
proofs: Vec<eth_types::EIP1186ProofResponse>,
codes: HashMap<Address, Vec<u8>>,
) -> (StateDB, CodeDB) {
build_state_code_db(proofs, codes)
}
/// Step 5. For each step in TxExecTraces, gen the associated ops and state
/// circuit inputs
pub fn gen_inputs_from_state(
&self,
sdb: StateDB,
code_db: CodeDB,
eth_block: &EthBlock,
geth_traces: &[eth_types::GethExecTrace],
history_hashes: Vec<Word>,
prev_state_root: Word,
) -> Result<CircuitInputBuilder<FixedCParams>, Error> {
let block = Block::new(self.chain_id, history_hashes, prev_state_root, eth_block)?;
let builder = CircuitInputBuilder::new(
sdb,
code_db,
block,
self.circuits_params,
self.feature_config,
);
let builder = builder.handle_block(eth_block, geth_traces)?;
Ok(builder)
}
/// Perform all the steps to generate the circuit inputs
pub async fn gen_inputs(
&self,
block_num: u64,
) -> Result<
(
CircuitInputBuilder<FixedCParams>,
eth_types::Block<eth_types::Transaction>,
),
Error,
> {
let (eth_block, geth_traces, history_hashes, prev_state_root) =
self.get_block(block_num).await?;
let access_set = Self::get_state_accesses(ð_block, &geth_traces)?;
let (proofs, codes) = self.get_state(block_num, access_set).await?;
let (state_db, code_db) = Self::build_state_code_db(proofs, codes);
let builder = self.gen_inputs_from_state(
state_db,
code_db,
ð_block,
&geth_traces,
history_hashes,
prev_state_root,
)?;
Ok((builder, eth_block))
}
}