1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
//! Execution step related module.
use crate::{
circuit_input_builder::CallContext,
error::{ExecError, OogError},
exec_trace::OperationRef,
operation::RWCounter,
precompile::{PrecompileAuxData, PrecompileCalls},
};
use eth_types::{evm_types::OpcodeId, sign_types::SignData, GethExecStep, Word, H256};
use gadgets::impl_expr;
use halo2_proofs::plonk::Expression;
use strum_macros::EnumIter;
/// An execution step of the EVM.
#[derive(Clone, Debug, Default)]
pub struct ExecStep {
/// Execution state
pub exec_state: ExecState,
/// Program Counter
pub pc: u64,
/// Stack size
pub stack_size: usize,
/// Memory size
pub memory_size: usize,
/// Gas left
pub gas_left: u64,
/// Gas cost of the step. If the error is OutOfGas caused by a "gas uint64
/// overflow", this value will **not** be the actual Gas cost of the
/// step.
pub gas_cost: u64,
/// Accumulated gas refund
pub gas_refund: u64,
/// Call index within the Transaction.
pub call_index: usize,
/// The global counter when this step was executed.
pub rwc: RWCounter,
/// The inner chunk counter when this step was executed.
pub rwc_inner_chunk: RWCounter,
/// Reversible Write Counter. Counter of write operations in the call that
/// will need to be undone in case of a revert. Value at the beginning of
/// the step.
pub reversible_write_counter: usize,
/// Number of reversible write operations done by this step.
pub reversible_write_counter_delta: usize,
/// Log index when this step was executed.
pub log_id: usize,
/// The list of references to Operations in the container
pub bus_mapping_instance: Vec<OperationRef>,
/// Number of rw operations performed via a copy event in this step.
pub copy_rw_counter_delta: u64,
/// Error generated by this step
pub error: Option<ExecError>,
/// Optional auxiliary data that is attached to precompile call internal states.
pub aux_data: Option<PrecompileAuxData>,
}
impl ExecStep {
/// Create a new Self from a `GethExecStep`.
pub fn new(
step: &GethExecStep,
call_ctx: &CallContext,
rwc: RWCounter,
rwc_inner_chunk: RWCounter,
reversible_write_counter: usize,
log_id: usize,
) -> Self {
ExecStep {
exec_state: ExecState::Op(step.op),
pc: step.pc,
stack_size: step.stack.0.len(),
memory_size: call_ctx.memory.len(),
gas_left: step.gas,
gas_cost: step.gas_cost,
gas_refund: step.refund,
call_index: call_ctx.index,
rwc,
rwc_inner_chunk,
reversible_write_counter,
reversible_write_counter_delta: 0,
log_id,
bus_mapping_instance: Vec::new(),
copy_rw_counter_delta: 0,
error: None,
aux_data: None,
}
}
/// Returns `true` if `error` is oog and stack related..
pub fn oog_or_stack_error(&self) -> bool {
matches!(
self.error,
Some(ExecError::OutOfGas(_) | ExecError::StackOverflow | ExecError::StackUnderflow)
)
}
/// Try get opcode, if possible
pub fn opcode(&self) -> Option<OpcodeId> {
match self.exec_state {
ExecState::Op(op) => Some(op),
_ => None,
}
}
/// get rw index
pub fn rw_index(&self, index: usize) -> OperationRef {
self.bus_mapping_instance[index]
}
/// Get the size of read and writes
pub fn rw_indices_len(&self) -> usize {
self.bus_mapping_instance.len()
}
/// Get stack pointer
pub fn stack_pointer(&self) -> u64 {
1024 - self.stack_size as u64
}
/// The memory size in word **before** this step
pub fn memory_word_size(&self) -> u64 {
let n_bytes_word = 32u64;
let memory_size = self.memory_size as u64;
// EVM always pads the memory size to word size
// https://github.com/ethereum/go-ethereum/blob/a340721aa909ea4b541ffd1ea5e9c7bd441ff769/core/vm/interpreter.go#L201-L205
// Thus, the memory size must be a multiple of 32 bytes.
assert_eq!(memory_size % n_bytes_word, 0);
memory_size / n_bytes_word
}
/// Returns `true` if this is an execution step of Precompile.
pub fn is_precompiled(&self) -> bool {
matches!(self.exec_state, ExecState::Precompile(_))
}
/// Returns `true` if `error` is oog in precompile calls
pub fn is_precompile_oog_err(&self) -> bool {
matches!(self.error, Some(ExecError::OutOfGas(OogError::Precompile)))
}
}
/// Execution state
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ExecState {
/// EVM Opcode ID
Op(OpcodeId),
/// Precompile call
Precompile(PrecompileCalls),
/// Virtual step Begin Chunk
BeginChunk,
/// Virtual step Begin Tx
BeginTx,
/// Virtual step End Tx
EndTx,
/// Virtual step Padding
Padding,
/// Virtual step End Block
EndBlock,
/// Virtual step End Chunk
EndChunk,
/// Invalid Tx
InvalidTx,
}
impl Default for ExecState {
fn default() -> Self {
ExecState::Op(OpcodeId::STOP)
}
}
impl ExecState {
/// Returns `true` if `ExecState` is an opcode and the opcode is a `PUSHn`.
pub fn is_push(&self) -> bool {
if let ExecState::Op(op) = self {
op.is_push()
} else {
false
}
}
/// Returns `true` if `ExecState` is an opcode and the opcode is a `DUPn`.
pub fn is_dup(&self) -> bool {
if let ExecState::Op(op) = self {
op.is_dup()
} else {
false
}
}
/// Returns `true` if `ExecState` is an opcode and the opcode is a `SWAPn`.
pub fn is_swap(&self) -> bool {
if let ExecState::Op(op) = self {
op.is_swap()
} else {
false
}
}
/// Returns `true` if `ExecState` is an opcode and the opcode is a `Logn`.
pub fn is_log(&self) -> bool {
if let ExecState::Op(op) = self {
op.is_log()
} else {
false
}
}
}
/// Defines the various source/destination types for a copy event.
#[derive(Clone, Copy, Debug, PartialEq, Eq, EnumIter)]
pub enum CopyDataType {
/// When we need to pad the Copy rows of the circuit up to a certain maximum
/// with rows that are not "useful".
Padding = 0,
/// When the source for the copy event is the bytecode table.
Bytecode,
/// When the source/destination for the copy event is memory.
Memory,
/// When the source for the copy event is tx's calldata.
TxCalldata,
/// When the destination for the copy event is tx's log.
TxLog,
/// When the destination rows are not directly for copying but for a special
/// scenario where we wish to accumulate the value (RLC) over all rows.
/// This is used for Copy Lookup from SHA3 opcode verification.
RlcAcc,
}
impl From<CopyDataType> for usize {
fn from(t: CopyDataType) -> Self {
t as usize
}
}
impl Default for CopyDataType {
fn default() -> Self {
Self::Memory
}
}
impl_expr!(CopyDataType);
/// Defines a single copy step in a copy event. This type is unified over the
/// source/destination row in the copy table.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct CopyStep {
/// Byte value copied in this step.
pub value: u8,
/// Optional field which is enabled only for the source being `bytecode`,
/// and represents whether or not the byte is an opcode.
pub is_code: Option<bool>,
}
/// Defines an enum type that can hold either a number or a hash value.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum NumberOrHash {
/// Variant to indicate a number value.
Number(usize),
/// Variant to indicate a 256-bits hash value.
Hash(H256),
}
/// Defines a copy event associated with EVM opcodes such as CALLDATACOPY,
/// CODECOPY, CREATE, etc. More information:
/// <https://github.com/privacy-scaling-explorations/zkevm-specs/blob/master/specs/copy-proof.md>.
#[derive(Clone, Debug)]
pub struct CopyEvent {
/// Represents the start address at the source of the copy event.
pub src_addr: u64,
/// Represents the end address at the source of the copy event.
pub src_addr_end: u64,
/// Represents the source type.
pub src_type: CopyDataType,
/// Represents the relevant ID for source.
pub src_id: NumberOrHash,
/// Represents the start address at the destination of the copy event.
pub dst_addr: u64,
/// Represents the destination type.
pub dst_type: CopyDataType,
/// Represents the relevant ID for destination.
pub dst_id: NumberOrHash,
/// An optional field to hold the log ID in case of the destination being
/// TxLog.
pub log_id: Option<u64>,
/// Value of rw counter at start of this copy event
pub rw_counter_start: RWCounter,
/// Represents the list of (bytes, is_code) copied during this copy event
pub bytes: Vec<(u8, bool)>,
}
impl CopyEvent {
/// rw counter at step index
pub fn rw_counter(&self, step_index: usize) -> u64 {
u64::try_from(self.rw_counter_start.0).unwrap() + self.rw_counter_increase(step_index)
}
/// rw counter increase left at step index
pub fn rw_counter_increase_left(&self, step_index: usize) -> u64 {
self.rw_counter(self.bytes.len() * 2) - self.rw_counter(step_index)
}
/// Number of rw operations performed by this copy event
pub fn rw_counter_delta(&self) -> u64 {
self.rw_counter_increase(self.bytes.len() * 2)
}
// increase in rw counter from the start of the copy event to step index
fn rw_counter_increase(&self, step_index: usize) -> u64 {
let source_rw_increase = match self.src_type {
CopyDataType::Bytecode | CopyDataType::TxCalldata | CopyDataType::RlcAcc => 0,
CopyDataType::Memory => std::cmp::min(
u64::try_from(step_index + 1).unwrap() / 2,
self.src_addr_end
.checked_sub(self.src_addr)
.unwrap_or_default(),
),
CopyDataType::TxLog | CopyDataType::Padding => unreachable!(),
};
let destination_rw_increase = match self.dst_type {
CopyDataType::RlcAcc | CopyDataType::Bytecode => 0,
CopyDataType::TxLog | CopyDataType::Memory => u64::try_from(step_index).unwrap() / 2,
CopyDataType::TxCalldata | CopyDataType::Padding => unreachable!(),
};
source_rw_increase + destination_rw_increase
}
}
/// Intermediary multiplication step, representing `a * b == d (mod 2^256)`
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExpStep {
/// First multiplicand.
pub a: Word,
/// Second multiplicand.
pub b: Word,
/// Multiplication result.
pub d: Word,
}
impl From<(Word, Word, Word)> for ExpStep {
fn from(values: (Word, Word, Word)) -> Self {
Self {
a: values.0,
b: values.1,
d: values.2,
}
}
}
/// Event representing an exponentiation `a ^ b == d (mod 2^256)`.
#[derive(Clone, Debug)]
pub struct ExpEvent {
/// Identifier for the exponentiation trace.
pub identifier: usize,
/// Base `a` for the exponentiation.
pub base: Word,
/// Exponent `b` for the exponentiation.
pub exponent: Word,
/// Exponentiation result.
pub exponentiation: Word,
/// Intermediate multiplication results.
pub steps: Vec<ExpStep>,
}
impl Default for ExpEvent {
fn default() -> Self {
Self {
identifier: 0,
base: 2.into(),
exponent: 2.into(),
exponentiation: 4.into(),
steps: vec![ExpStep {
a: 2.into(),
b: 2.into(),
d: 4.into(),
}],
}
}
}
/// I/Os from all precompiled contract calls in a block.
#[derive(Clone, Debug, Default)]
pub struct PrecompileEvents {
/// All events.
pub events: Vec<PrecompileEvent>,
}
impl PrecompileEvents {
/// Get all ecrecover events.
pub fn get_ecrecover_events(&self) -> Vec<SignData> {
self.events
.iter()
.map(|e| {
let PrecompileEvent::Ecrecover(sign_data) = e;
sign_data
})
.cloned()
.collect()
}
}
/// I/O from a precompiled contract call.
#[derive(Clone, Debug)]
pub enum PrecompileEvent {
/// Represents the I/O from Ecrecover call.
Ecrecover(SignData),
}
impl Default for PrecompileEvent {
fn default() -> Self {
Self::Ecrecover(SignData::default())
}
}
/// The number of pairing inputs per pairing operation. If the inputs provided to the precompile
/// call are < 4, we append (G1::infinity, G2::generator) until we have the required no. of inputs.
pub const N_PAIRING_PER_OP: usize = 4;
/// The number of bytes taken to represent a pair (G1, G2).
pub const N_BYTES_PER_PAIR: usize = 192;