1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use crate::{
    evm_circuit::{
        execution::ExecutionGadget,
        step::ExecutionState,
        util::{
            common_gadget::SameContextGadget,
            constraint_builder::{
                ConstrainBuilderCommon, EVMConstraintBuilder, StepStateTransition,
                Transition::Delta,
            },
            CachedRegion, U64Cell,
        },
        witness::{Block, Call, Chunk, ExecStep, Transaction},
    },
    util::{word::WordExpr, Expr},
};
use eth_types::{evm_types::OpcodeId, Field};
use halo2_proofs::plonk::Error;

#[derive(Clone, Debug)]
pub(crate) struct GasGadget<F> {
    same_context: SameContextGadget<F>,
    gas_left: U64Cell<F>,
}

impl<F: Field> ExecutionGadget<F> for GasGadget<F> {
    const NAME: &'static str = "GAS";

    const EXECUTION_STATE: ExecutionState = ExecutionState::GAS;

    fn configure(cb: &mut EVMConstraintBuilder<F>) -> Self {
        // The gas passed to a transaction is a 64-bit number.
        let gas_left = cb.query_u64();

        // The `gas_left` in the current state has to be deducted by the gas
        // used by the `GAS` opcode itself.
        cb.require_equal(
            "Constraint: gas left equal to stack value",
            gas_left.expr(),
            cb.curr.state.gas_left.expr() - OpcodeId::GAS.constant_gas_cost().expr(),
        );

        // Construct the value and push it to stack.
        cb.stack_push(gas_left.to_word());

        let step_state_transition = StepStateTransition {
            rw_counter: Delta(1.expr()),
            program_counter: Delta(1.expr()),
            stack_pointer: Delta((-1).expr()),
            gas_left: Delta(-OpcodeId::GAS.constant_gas_cost().expr()),
            ..Default::default()
        };
        let opcode = cb.query_cell();
        let same_context = SameContextGadget::construct(cb, opcode, step_state_transition);

        Self {
            same_context,
            gas_left,
        }
    }

    fn assign_exec_step(
        &self,
        region: &mut CachedRegion<'_, '_, F>,
        offset: usize,
        _: &Block<F>,
        _: &Chunk<F>,
        _: &Transaction,
        _call: &Call,
        step: &ExecStep,
    ) -> Result<(), Error> {
        self.same_context.assign_exec_step(region, offset, step)?;

        // The GAS opcode takes into account the reduction of gas available due
        // to the instruction itself.
        self.gas_left.assign(
            region,
            offset,
            Some(
                step.gas_left
                    .saturating_sub(OpcodeId::GAS.constant_gas_cost())
                    .to_le_bytes(),
            ),
        )?;

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use crate::test_util::CircuitTestBuilder;
    use eth_types::{address, bytecode, Word};
    use mock::TestContext;

    fn test_ok() {
        let bytecode = bytecode! {
            GAS
            STOP
        };

        CircuitTestBuilder::new_from_test_ctx(
            TestContext::<2, 1>::simple_ctx_with_bytecode(bytecode).unwrap(),
        )
        .run();
    }

    #[test]
    fn gas_gadget_simple() {
        test_ok();
    }

    #[test]
    fn gas_gadget_incorrect_deduction() {
        let bytecode = bytecode! {
            GAS
            STOP
        };

        // Create a custom tx setting Gas to
        let ctx = TestContext::<2, 1>::new(
            None,
            |accs| {
                accs[0]
                    .address(address!("0x0000000000000000000000000000000000000010"))
                    .balance(Word::from(1u64 << 20))
                    .code(bytecode);
                accs[1]
                    .address(address!("0x0000000000000000000000000000000000000000"))
                    .balance(Word::from(1u64 << 20));
            },
            |mut txs, accs| {
                txs[0]
                    .to(accs[0].address)
                    .from(accs[1].address)
                    .gas(Word::from(1_000_000u64));
            },
            |block, _tx| block.number(0xcafeu64),
        )
        .unwrap();

        CircuitTestBuilder::<2, 1>::new_from_test_ctx(ctx)
            .block_modifier(Box::new(|block, _chunk| {
                // The above block has 2 steps (GAS and STOP). We forcefully assign a
                // wrong `gas_left` value for the second step, to assert that
                // the circuit verification fails for this scenario.
                assert_eq!(block.txs.len(), 1);
                assert_eq!(block.txs[0].steps().len(), 4);
                block.txs[0].steps_mut()[2].gas_left -= 1;
            }))
            .run_with_result()
            .unwrap_err()
            .assert_evm_failure()
    }
}