1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
use crate::{
    evm_circuit::{
        execution::ExecutionGadget,
        param::N_BYTES_MEMORY_WORD_SIZE,
        step::ExecutionState,
        util::{
            common_gadget::SameContextGadget,
            constraint_builder::{
                ConstrainBuilderCommon, EVMConstraintBuilder, StepStateTransition,
                Transition::{Delta, To},
            },
            memory_gadget::{
                CommonMemoryAddressGadget, MemoryAddressGadget, MemoryExpansionGadget,
            },
            not, sum, CachedRegion, Cell, StepRws,
        },
        witness::{Block, Call, Chunk, ExecStep, Transaction},
    },
    table::{CallContextFieldTag, TxLogFieldTag},
    util::{
        build_tx_log_expression,
        word::{Word32Cell, WordExpr, WordLoHi, WordLoHiCell},
        Expr,
    },
};
use array_init::array_init;
use bus_mapping::circuit_input_builder::CopyDataType;
use eth_types::{
    evm_types::{GasCost, OpcodeId},
    Field, ToScalar, U256,
};
use halo2_proofs::{circuit::Value, plonk::Error};

#[derive(Clone, Debug)]
pub(crate) struct LogGadget<F> {
    same_context: SameContextGadget<F>,
    // memory address
    memory_address: MemoryAddressGadget<F>,
    topics: [Word32Cell<F>; 4],
    topic_selectors: [Cell<F>; 4],

    contract_address: WordLoHiCell<F>,
    is_static_call: Cell<F>,
    is_persistent: Cell<F>,
    tx_id: Cell<F>,
    copy_rwc_inc: Cell<F>,
    memory_expansion: MemoryExpansionGadget<F, 1, N_BYTES_MEMORY_WORD_SIZE>,
}

impl<F: Field> ExecutionGadget<F> for LogGadget<F> {
    const NAME: &'static str = "LOG";

    const EXECUTION_STATE: ExecutionState = ExecutionState::LOG;

    fn configure(cb: &mut EVMConstraintBuilder<F>) -> Self {
        let mstart = cb.query_word_unchecked();
        let msize = cb.query_memory_address();

        // Pop mstart_address, msize from stack
        cb.stack_pop(mstart.to_word());
        cb.stack_pop(msize.to_word());
        // read tx id
        let tx_id = cb.call_context(None, CallContextFieldTag::TxId);
        // constrain not in static call
        let is_static_call = cb.call_context(None, CallContextFieldTag::IsStatic);
        cb.require_zero("is_static_call is false", is_static_call.expr());

        // check contract_address in CallContext & TxLog
        // use call context's  callee address as contract address
        let contract_address =
            cb.call_context_read_as_word(None, CallContextFieldTag::CalleeAddress);
        let is_persistent = cb.call_context(None, CallContextFieldTag::IsPersistent);
        cb.require_boolean("is_persistent is bool", is_persistent.expr());

        cb.condition(is_persistent.expr(), |cb| {
            cb.tx_log_lookup(
                tx_id.expr(),
                cb.curr.state.log_id.expr() + 1.expr(),
                TxLogFieldTag::Address,
                0.expr(),
                contract_address.to_word(),
            );
        });

        // constrain topics in logs
        let topics = array_init(|_| cb.query_word32());
        let topic_selectors: [Cell<F>; 4] = array_init(|_| cb.query_cell());
        for (idx, topic) in topics.iter().enumerate() {
            cb.condition(topic_selectors[idx].expr(), |cb| {
                cb.stack_pop(topic.to_word());
            });
            cb.condition(topic_selectors[idx].expr() * is_persistent.expr(), |cb| {
                cb.tx_log_lookup(
                    tx_id.expr(),
                    cb.curr.state.log_id.expr() + 1.expr(),
                    TxLogFieldTag::Topic,
                    idx.expr(),
                    topic.to_word(),
                );
            });
        }

        let opcode = cb.query_cell();
        let topic_count = opcode.expr() - OpcodeId::LOG0.as_u8().expr();

        // TOPIC_COUNT == Non zero topic selector count
        cb.require_equal(
            " sum of topic selectors = topic_count ",
            topic_count.clone(),
            sum::expr(topic_selectors.clone()),
        );

        // `topic_selectors` order must be from 1 --> 0
        for idx in 0..4 {
            cb.require_boolean("topic selector is bool ", topic_selectors[idx].expr());
            if idx > 0 {
                let selector_prev = topic_selectors[idx - 1].expr();
                // selector can transit from 1 to 0 only once as [1, 1 ..., 0]
                cb.require_boolean(
                    "Constrain topic selectors can only transit from 1 to 0",
                    selector_prev - topic_selectors[idx].expr(),
                );
            }
        }

        // check memory copy
        let memory_address = MemoryAddressGadget::construct(cb, mstart, msize);

        // Calculate the next memory size and the gas cost for this memory
        // access
        let memory_expansion = MemoryExpansionGadget::construct(cb, [memory_address.address()]);

        let copy_rwc_inc = cb.query_cell();
        let dst_addr = build_tx_log_expression(
            0.expr(),
            TxLogFieldTag::Data.expr(),
            cb.curr.state.log_id.expr() + 1.expr(),
        );
        let cond = memory_address.has_length() * is_persistent.expr();
        cb.condition(cond.clone(), |cb| {
            cb.copy_table_lookup(
                WordLoHi::from_lo_unchecked(cb.curr.state.call_id.expr()),
                CopyDataType::Memory.expr(),
                WordLoHi::from_lo_unchecked(tx_id.expr()),
                CopyDataType::TxLog.expr(),
                memory_address.offset(),
                memory_address.address(),
                dst_addr,
                memory_address.length(),
                0.expr(), // for LOGN, rlc_acc is 0
                copy_rwc_inc.expr(),
            );
        });
        cb.condition(not::expr(cond), |cb| {
            cb.require_zero(
                "if length is 0 or tx is not persistent, copy table rwc inc == 0",
                copy_rwc_inc.expr(),
            );
        });

        let gas_cost = GasCost::LOG.expr()
            + GasCost::LOG.expr() * topic_count.clone()
            + 8.expr() * memory_address.length()
            + memory_expansion.gas_cost();
        // State transition

        let step_state_transition = StepStateTransition {
            rw_counter: Delta(cb.rw_counter_offset()),
            program_counter: Delta(1.expr()),
            stack_pointer: Delta(2.expr() + topic_count),
            memory_word_size: To(memory_expansion.next_memory_word_size()),
            log_id: Delta(is_persistent.expr()),
            gas_left: Delta(-gas_cost),
            ..Default::default()
        };

        let same_context = SameContextGadget::construct(cb, opcode, step_state_transition);

        Self {
            same_context,
            memory_address,
            topics,
            topic_selectors,
            contract_address,
            is_static_call,
            is_persistent,
            tx_id,
            copy_rwc_inc,
            memory_expansion,
        }
    }

    fn assign_exec_step(
        &self,
        region: &mut CachedRegion<'_, '_, F>,
        offset: usize,
        block: &Block<F>,
        _chunk: &Chunk<F>,
        tx: &Transaction,
        call: &Call,
        step: &ExecStep,
    ) -> Result<(), Error> {
        self.same_context.assign_exec_step(region, offset, step)?;

        let mut rws = StepRws::new(block, step);

        let memory_start = rws.next().stack_value();
        let msize = rws.next().stack_value();

        let memory_address = self
            .memory_address
            .assign(region, offset, memory_start, msize)?;

        // Memory expansion
        self.memory_expansion
            .assign(region, offset, step.memory_word_size(), [memory_address])?;

        let opcode = step.opcode().unwrap();
        let topic_count = opcode.postfix().expect("opcode with postfix") as usize;
        assert!(topic_count <= 4);

        let is_persistent = call.is_persistent as usize;
        let mut topics = (0..topic_count).map(|topic| {
            // We compute the index of the correct read-write record from
            // bus-mapping/src/evm/opcodes/logs.rs::gen_log_step
            // It takes 6 + is_persistent reads or writes to reach the topic stack write section.
            // Each topic takes at least 1 stack read. They take an additional tx log write if the
            // call is persistent.
            block
                .get_rws(step, 6 + is_persistent + topic * (1 + is_persistent))
                .stack_value()
        });
        for i in 0..4 {
            let topic = topics.next();
            self.topic_selectors[i].assign(
                region,
                offset,
                Value::known(F::from(topic.is_some().into())),
            )?;
            self.topics[i].assign_u256(region, offset, topic.unwrap_or_default())?;
        }

        self.contract_address
            .assign_h160(region, offset, call.address)?;
        let is_persistent = call.is_persistent as u64;
        self.is_static_call
            .assign(region, offset, Value::known(F::from(call.is_static as u64)))?;
        self.is_persistent
            .assign(region, offset, Value::known(F::from(is_persistent)))?;
        self.tx_id
            .assign(region, offset, Value::known(F::from(tx.id)))?;
        // rw_counter increase from copy table lookup is `msize` memory reads + `msize`
        // log writes when `is_persistent` is true.
        self.copy_rwc_inc.assign(
            region,
            offset,
            Value::known(
                ((msize + msize) * U256::from(is_persistent))
                    .to_scalar()
                    .expect("unexpected U256 -> Scalar conversion failure"),
            ),
        )?;

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use crate::test_util::CircuitTestBuilder;
    use eth_types::{evm_types::OpcodeId, Bytecode, Word};
    use mock::TestContext;
    use rand::Rng;

    #[test]
    fn log_gadget_simple() {
        // 1. tests for is_persistent = true cases
        // zero topic: log0
        test_log_ok(&[], true);
        // one topic: log1
        test_log_ok(&[Word::from(0xA0)], true);
        // two topics: log2
        test_log_ok(&[Word::from(0xA0), Word::from(0xef)], true);
        // three topics: log3
        test_log_ok(
            &[Word::from(0xA0), Word::from(0xef), Word::from(0xb0)],
            true,
        );
        // four topics: log4
        test_log_ok(
            &[
                Word::from(0xA0),
                Word::from(0xef),
                Word::from(0xb0),
                Word::from(0x37),
            ],
            true,
        );

        // 2. tests for is_persistent = false cases
        // log0
        test_log_ok(&[], false);
        // log1
        test_log_ok(&[Word::from(0xA0)], false);
        // log4
        test_log_ok(
            &[
                Word::from(0xA0),
                Word::from(0xef),
                Word::from(0xb0),
                Word::from(0x37),
            ],
            false,
        );
    }

    #[test]
    fn log_gadget_multi_logs() {
        // zero topic: log0
        test_multi_log_ok(&[]);
        // one topic: log1
        test_multi_log_ok(&[Word::from(0xA0)]);
        // two topics: log2
        test_multi_log_ok(&[Word::from(0xA0), Word::from(0xef)]);
        // three topics: log3
        test_multi_log_ok(&[Word::from(0xA0), Word::from(0xef), Word::from(0xb0)]);
        // four topics: log4
        test_multi_log_ok(&[
            Word::from(0xA0),
            Word::from(0xef),
            Word::from(0xb0),
            Word::from(0x37),
        ]);
    }

    // test single log code and single copy log step
    fn test_log_ok(topics: &[Word], is_persistent: bool) {
        let mut pushdata = [0u8; 320];
        rand::thread_rng().try_fill(&mut pushdata[..]).unwrap();
        let mut code_prepare = prepare_code(&pushdata, 1);

        let log_codes = [
            OpcodeId::LOG0,
            OpcodeId::LOG1,
            OpcodeId::LOG2,
            OpcodeId::LOG3,
            OpcodeId::LOG4,
        ];

        let topic_count = topics.len();
        let cur_op_code = log_codes[topic_count];

        // use more than 256 for testing offset rlc
        let mstart = 0x102usize;
        let msize = 0x20usize;
        let mut code = Bytecode::default();
        // make dynamic topics push operations
        for topic in topics {
            code.push(32, *topic);
        }
        code.push(32, Word::from(msize));
        code.push(32, Word::from(mstart));
        code.write_op(cur_op_code);
        if is_persistent {
            code.op_stop();
        } else {
            // make current call failed with false persistent
            code.write_op(OpcodeId::INVALID(0xfe));
        }

        code_prepare.append(&code);

        CircuitTestBuilder::new_from_test_ctx(
            TestContext::<2, 1>::simple_ctx_with_bytecode(code).unwrap(),
        )
        .run();
    }

    // test multi log op codes and multi copy log steps
    fn test_multi_log_ok(topics: &[Word]) {
        // prepare memory data
        let mut pushdata = [0u8; 320];
        rand::thread_rng().try_fill(&mut pushdata[..]).unwrap();
        let mut code_prepare = prepare_code(&pushdata, 0);

        let log_codes = [
            OpcodeId::LOG0,
            OpcodeId::LOG1,
            OpcodeId::LOG2,
            OpcodeId::LOG3,
            OpcodeId::LOG4,
        ];

        let topic_count = topics.len();
        let cur_op_code = log_codes[topic_count];

        let mut mstart = 0x00usize;
        let mut msize = 0x10usize;
        // first log op code
        let mut code = Bytecode::default();
        // make dynamic topics push operations
        for topic in topics {
            code.push(32, *topic);
        }
        code.push(32, Word::from(msize));
        code.push(32, Word::from(mstart));
        code.write_op(cur_op_code);

        // second log op code
        // prepare additional bytes for memory reading
        code.append(&prepare_code(&pushdata, 0x20));
        mstart = 0x00usize;
        // when msize > 0x20 (32) needs multi copy steps
        msize = 0x30usize;
        for topic in topics {
            code.push(32, *topic);
        }
        code.push(32, Word::from(msize));
        code.push(32, Word::from(mstart));
        code.write_op(cur_op_code);

        code.op_stop();
        code_prepare.append(&code);

        CircuitTestBuilder::new_from_test_ctx(
            TestContext::<2, 1>::simple_ctx_with_bytecode(code).unwrap(),
        )
        .run();
    }

    /// prepare memory reading data
    fn prepare_code(data: &[u8], offset: usize) -> Bytecode {
        assert_eq!(data.len() % 32, 0);
        // prepare memory data
        let mut code = Bytecode::default();
        for (i, d) in data.chunks(32).enumerate() {
            code.op_mstore(offset + i * 32, Word::from_big_endian(d));
        }
        code
    }
}