1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use crate::{
    evm_circuit::{
        execution::ExecutionGadget,
        param::N_BYTES_MEMORY_WORD_SIZE,
        step::ExecutionState,
        util::{
            common_gadget::SameContextGadget,
            constraint_builder::{
                ConstrainBuilderCommon, EVMConstraintBuilder, StepStateTransition,
                Transition::{Delta, To},
            },
            math_gadget::RangeCheckGadget,
            memory_gadget::{
                CommonMemoryAddressGadget, MemoryAddressGadget, MemoryCopierGasGadget,
                MemoryExpansionGadget,
            },
            CachedRegion, Cell, MemoryAddress, StepRws,
        },
        witness::{Block, Call, Chunk, ExecStep, Transaction},
    },
    table::CallContextFieldTag,
    util::{
        word::{WordExpr, WordLoHi},
        Expr,
    },
};
use bus_mapping::{circuit_input_builder::CopyDataType, evm::OpcodeId};
use eth_types::{evm_types::GasCost, Field, ToScalar};
use gadgets::util::not;
use halo2_proofs::{circuit::Value, plonk::Error};

#[derive(Clone, Debug)]
pub(crate) struct ReturnDataCopyGadget<F> {
    same_context: SameContextGadget<F>,
    /// Holds the last_called_id for copy table.
    last_callee_id: Cell<F>,
    /// Holds the memory address for return data from where we read.
    return_data_offset: Cell<F>,
    /// Holds the size of the return data.
    return_data_size: Cell<F>,
    /// The data is copied to memory. To verify this
    /// copy operation we need the MemoryAddressGadget.
    dst_memory_addr: MemoryAddressGadget<F>,
    /// Holds the memory address for the offset in return data from where we
    /// read.
    data_offset: MemoryAddress<F>,
    /// Opcode RETURNDATACOPY has a dynamic gas cost:
    /// gas_code = static_gas * minimum_word_size + memory_expansion_cost
    memory_expansion: MemoryExpansionGadget<F, 1, N_BYTES_MEMORY_WORD_SIZE>,
    /// Opcode RETURNDATAECOPY needs to copy data into memory. We account for
    /// the copying costs using the memory copier gas gadget.
    memory_copier_gas: MemoryCopierGasGadget<F, { GasCost::COPY }>,
    /// RW inverse counter from the copy table at the start of related copy
    /// steps.
    copy_rwc_inc: Cell<F>,
    /// Out of bound check circuit.
    in_bound_check: RangeCheckGadget<F, N_BYTES_MEMORY_WORD_SIZE>,
}

impl<F: Field> ExecutionGadget<F> for ReturnDataCopyGadget<F> {
    const NAME: &'static str = "RETURNDATACOPY";

    const EXECUTION_STATE: ExecutionState = ExecutionState::RETURNDATACOPY;

    fn configure(cb: &mut EVMConstraintBuilder<F>) -> Self {
        let opcode = cb.query_cell();

        let dest_offset = cb.query_word_unchecked();
        let data_offset = cb.query_memory_address();
        let size = cb.query_memory_address();

        // 1. Pop dest_offset, offset, length from stack
        cb.stack_pop(dest_offset.to_word());
        cb.stack_pop(WordLoHi::from_lo_unchecked(data_offset.expr()));
        cb.stack_pop(WordLoHi::from_lo_unchecked(size.expr()));

        // 2. Add lookup constraint in the call context for the returndatacopy field.
        let last_callee_id = cb.query_cell();
        let return_data_offset = cb.query_cell();
        let return_data_size = cb.query_cell();
        cb.call_context_lookup_read(
            None,
            CallContextFieldTag::LastCalleeId,
            WordLoHi::from_lo_unchecked(last_callee_id.expr()),
        );
        cb.call_context_lookup_read(
            None,
            CallContextFieldTag::LastCalleeReturnDataOffset,
            WordLoHi::from_lo_unchecked(return_data_offset.expr()),
        );
        cb.call_context_lookup_read(
            None,
            CallContextFieldTag::LastCalleeReturnDataLength,
            WordLoHi::from_lo_unchecked(return_data_size.expr()),
        );

        // 3. constraints for copy: copy overflow check
        // i.e., offset + size <= return_data_size
        let in_bound_check = RangeCheckGadget::construct(
            cb,
            return_data_size.expr() - (data_offset.expr() + size.expr()),
        );

        // 4. memory copy
        // Construct memory address in the destination (memory) to which we copy memory.
        let dst_memory_addr = MemoryAddressGadget::construct(cb, dest_offset, size);

        // Calculate the next memory size and the gas cost for this memory
        // access. This also accounts for the dynamic gas required to copy bytes to
        // memory.
        let memory_expansion = MemoryExpansionGadget::construct(cb, [dst_memory_addr.address()]);
        let memory_copier_gas = MemoryCopierGasGadget::construct(
            cb,
            dst_memory_addr.length(),
            memory_expansion.gas_cost(),
        );

        let copy_rwc_inc = cb.query_cell();
        cb.condition(dst_memory_addr.has_length(), |cb| {
            cb.copy_table_lookup(
                WordLoHi::from_lo_unchecked(last_callee_id.expr()),
                CopyDataType::Memory.expr(),
                WordLoHi::from_lo_unchecked(cb.curr.state.call_id.expr()),
                CopyDataType::Memory.expr(),
                return_data_offset.expr() + data_offset.expr(),
                return_data_offset.expr() + return_data_size.expr(),
                dst_memory_addr.offset(),
                dst_memory_addr.length(),
                0.expr(), // for RETURNDATACOPY rlc_acc is 0
                copy_rwc_inc.expr(),
            );
        });
        cb.condition(not::expr(dst_memory_addr.has_length()), |cb| {
            cb.require_zero(
                "if no bytes to copy, copy table rwc inc == 0",
                copy_rwc_inc.expr(),
            );
        });

        // State transition
        let step_state_transition = StepStateTransition {
            rw_counter: Delta(cb.rw_counter_offset()),
            program_counter: Delta(1.expr()),
            stack_pointer: Delta(3.expr()),
            gas_left: Delta(
                -(OpcodeId::RETURNDATACOPY.constant_gas_cost().expr()
                    + memory_copier_gas.gas_cost()),
            ),
            memory_word_size: To(memory_expansion.next_memory_word_size()),
            ..Default::default()
        };
        let same_context = SameContextGadget::construct(cb, opcode, step_state_transition);

        Self {
            same_context,
            last_callee_id,
            return_data_offset,
            return_data_size,
            dst_memory_addr,
            data_offset,
            memory_expansion,
            memory_copier_gas,
            copy_rwc_inc,
            in_bound_check,
        }
    }

    fn assign_exec_step(
        &self,
        region: &mut CachedRegion<'_, '_, F>,
        offset: usize,
        block: &Block<F>,
        _chunk: &Chunk<F>,
        _tx: &Transaction,
        _call: &Call,
        step: &ExecStep,
    ) -> Result<(), Error> {
        self.same_context.assign_exec_step(region, offset, step)?;

        let mut rws = StepRws::new(block, step);

        let [dest_offset, data_offset, size] = [0, 1, 2].map(|_| rws.next().stack_value());

        self.data_offset.assign_u256(region, offset, data_offset)?;

        let last_callee_id = rws.next().call_context_value();
        let return_data_offset = rws.next().call_context_value();
        let return_data_size = rws.next().call_context_value();

        self.last_callee_id.assign(
            region,
            offset,
            Value::known(
                last_callee_id
                    .to_scalar()
                    .expect("unexpected U256 -> Scalar conversion failure"),
            ),
        )?;
        self.return_data_offset.assign(
            region,
            offset,
            Value::known(
                return_data_offset
                    .to_scalar()
                    .expect("unexpected U256 -> Scalar conversion failure"),
            ),
        )?;
        self.return_data_size.assign(
            region,
            offset,
            Value::known(
                return_data_size
                    .to_scalar()
                    .expect("unexpected U256 -> Scalar conversion failure"),
            ),
        )?;

        // assign the destination memory offset.
        let memory_address = self
            .dst_memory_addr
            .assign(region, offset, dest_offset, size)?;

        // assign to gadgets handling memory expansion cost and copying cost.
        let (_, memory_expansion_cost) = self.memory_expansion.assign(
            region,
            offset,
            step.memory_word_size(),
            [memory_address],
        )?;
        self.memory_copier_gas
            .assign(region, offset, size.as_u64(), memory_expansion_cost)?;

        // rw_counter always increases by `size` reads and `size` writes
        let copy_rwc_inc = size + size;
        self.copy_rwc_inc.assign(
            region,
            offset,
            Value::known(
                copy_rwc_inc
                    .to_scalar()
                    .expect("unexpected U256 -> Scalar conversion failure"),
            ),
        )?;

        self.in_bound_check.assign(
            region,
            offset,
            (return_data_size - (data_offset + size))
                .to_scalar()
                .expect("unexpected U256 -> Scalar conversion failure"),
        )?;

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use crate::{evm_circuit::test::rand_bytes, test_util::CircuitTestBuilder};
    use bus_mapping::circuit_input_builder::FixedCParams;
    use eth_types::{bytecode, Word};
    use mock::{generate_mock_call_bytecode, test_ctx::TestContext, MockCallBytecodeParams};

    fn test_ok_internal(
        return_data_offset: usize,
        return_data_size: usize,
        size: usize,
        offset: usize,
        dest_offset: Word,
    ) {
        let (addr_a, addr_b) = (mock::MOCK_ACCOUNTS[0], mock::MOCK_ACCOUNTS[1]);

        let return_offset =
            std::cmp::max((return_data_offset + return_data_size) as i64 - 32, 0) as usize;
        let code_b = bytecode! {
            .op_mstore(return_offset, Word::from_big_endian(&rand_bytes(32)))
            .op_return(return_data_offset, return_data_size)
            STOP
        };

        // code A calls code B.
        let instruction = bytecode! {
            PUSH32(size) // size
            PUSH32(offset) // offset
            PUSH32(dest_offset) // dest_offset
            RETURNDATACOPY
        };
        let code_a = generate_mock_call_bytecode(MockCallBytecodeParams {
            address: addr_b,
            return_data_offset,
            return_data_size,
            instructions_after_call: instruction,
            ..MockCallBytecodeParams::default()
        });

        let ctx = TestContext::<3, 1>::new(
            None,
            |accs| {
                accs[0].address(addr_a).code(code_a);
                accs[1].address(addr_b).code(code_b);
                accs[2]
                    .address(mock::MOCK_ACCOUNTS[2])
                    .balance(Word::from(1u64 << 30));
            },
            |mut txs, accs| {
                txs[0].to(accs[0].address).from(accs[2].address);
            },
            |block, _tx| block,
        )
        .unwrap();

        CircuitTestBuilder::new_from_test_ctx(ctx)
            .params(FixedCParams {
                max_rws: 2048,
                ..Default::default()
            })
            .run();
    }

    #[test]
    fn returndatacopy_gadget_do_nothing() {
        test_ok_internal(0, 2, 0, 0, 0x10.into());
    }

    #[test]
    fn returndatacopy_gadget_simple() {
        test_ok_internal(0, 2, 2, 0, 0x10.into());
    }

    #[test]
    fn returndatacopy_gadget_large() {
        test_ok_internal(0, 0x20, 0x20, 0, 0x20.into());
    }

    #[test]
    fn returndatacopy_gadget_large_partial() {
        test_ok_internal(0, 0x20, 0x10, 0x10, 0x20.into());
    }

    #[test]
    fn returndatacopy_gadget_zero_length() {
        test_ok_internal(0, 0, 0, 0, 0x20.into());
    }

    #[test]
    fn returndatacopy_gadget_long_length() {
        // rlc value matters only if length > 255, i.e., size.cells.len() > 1
        test_ok_internal(0, 0x200, 0x150, 0, 0x20.into());
    }

    #[test]
    fn returndatacopy_gadget_big_offset() {
        // rlc value matters only if length > 255, i.e., size.cells.len() > 1
        test_ok_internal(0x200, 0x200, 0x150, 0, 0x200.into());
    }

    #[test]
    fn returndatacopy_gadget_overflow_offset_and_zero_length() {
        test_ok_internal(0, 0x20, 0, 0x20, Word::MAX);
    }
}