1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
use crate::{
    evm_circuit::{
        execution::ExecutionGadget,
        step::ExecutionState,
        table::{FixedTableTag, Lookup},
        util::{
            common_gadget::SameContextGadget,
            constraint_builder::{
                ConstrainBuilderCommon, EVMConstraintBuilder, StepStateTransition,
                Transition::Delta,
            },
            math_gadget::{IsZeroGadget, IsZeroWordGadget, LtWordGadget, MulAddWordsGadget},
            sum, CachedRegion, Cell,
        },
        witness::{Block, Call, Chunk, ExecStep, Transaction},
    },
    util::{
        word::{Word32Cell, WordExpr, WordLoHi},
        Expr,
    },
};
use bus_mapping::evm::OpcodeId;
use eth_types::{Field, ToLittleEndian, U256};
use halo2_proofs::{circuit::Value, plonk::Error};

/// ShlShrGadget verifies opcode SHL and SHR.
/// For SHL, verify pop1 * (2^pop2) % 2^256 == push;
/// For SHR, verify pop1 / (2^pop2) % 2^256 == push;
/// when pop1, pop2, push are 256-bit words.
#[derive(Clone, Debug)]
pub(crate) struct ShlShrGadget<F> {
    same_context: SameContextGadget<F>,
    quotient: Word32Cell<F>,
    divisor: Word32Cell<F>,
    remainder: Word32Cell<F>,
    dividend: Word32Cell<F>,
    /// Shift word
    shift: Word32Cell<F>,
    /// First byte of shift word
    shf0: Cell<F>,
    /// Gadget that verifies quotient * divisor + remainder = dividend
    mul_add_words: MulAddWordsGadget<F>,
    /// Identify if `shift` is less than 256 or not
    shf_lt256: IsZeroGadget<F>,
    /// Check if divisor is zero
    divisor_is_zero: IsZeroWordGadget<F, Word32Cell<F>>,
    /// Check if remainder is zero
    remainder_is_zero: IsZeroWordGadget<F, Word32Cell<F>>,
    /// Check if remainder < divisor when divisor != 0
    remainder_lt_divisor: LtWordGadget<F>,
}

impl<F: Field> ExecutionGadget<F> for ShlShrGadget<F> {
    const NAME: &'static str = "SHL_SHR";

    const EXECUTION_STATE: ExecutionState = ExecutionState::SHL_SHR;

    fn configure(cb: &mut EVMConstraintBuilder<F>) -> Self {
        let opcode = cb.query_cell();
        let is_shl = OpcodeId::SHR.expr() - opcode.expr();
        let is_shr = 1.expr() - is_shl.expr();

        let quotient = cb.query_word32();
        let divisor = cb.query_word32();
        let remainder = cb.query_word32();
        let dividend = cb.query_word32();
        let shift = cb.query_word32();
        let shf0 = cb.query_cell();

        let mul_add_words =
            MulAddWordsGadget::construct(cb, [&quotient, &divisor, &remainder, &dividend]);
        let shf_lt256 = cb.is_zero(sum::expr(&shift.limbs[1..32]));
        let divisor_is_zero = cb.is_zero_word(&divisor);
        let remainder_is_zero = cb.is_zero_word(&remainder);
        let remainder_lt_divisor = cb.is_lt_word(&remainder.to_word(), &divisor.to_word());

        // Constrain stack pops and pushes as:
        // - for SHL, two pops are shift and quotient, and push is dividend.
        // - for SHR, two pops are shift and dividend, and push is quotient.
        cb.stack_pop(shift.to_word());
        cb.stack_pop(
            quotient
                .to_word()
                .mul_selector(is_shl.expr())
                .add_unchecked(dividend.to_word().mul_selector(is_shr.expr())),
        );
        cb.stack_push(
            (dividend
                .to_word()
                .mul_selector(is_shl.expr())
                .add_unchecked(quotient.to_word().mul_selector(is_shr.expr())))
            .mul_selector(1.expr() - divisor_is_zero.expr()),
        );

        cb.require_zero(
            "shf0 == shift.cells[0]",
            shf0.expr() - shift.limbs[0].expr(),
        );

        cb.require_zero_word(
            "shift == shift.cells[0] when divisor != 0",
            shift
                .to_word()
                .sub_unchecked(WordLoHi::from_lo_unchecked(shift.limbs[0].expr()))
                .mul_selector(1.expr() - divisor_is_zero.expr()),
        );

        cb.require_zero(
            "shift < 256 when divisor != 0 or shift >= 256 when divisor == 0",
            1.expr() - divisor_is_zero.expr() - shf_lt256.expr(),
        );

        cb.require_zero(
            "remainder < divisor when divisor != 0",
            (1.expr() - divisor_is_zero.expr()) * (1.expr() - remainder_lt_divisor.expr()),
        );

        cb.require_zero(
            "remainder == 0 for opcode SHL",
            is_shl * (1.expr() - remainder_is_zero.expr()),
        );

        cb.require_zero(
            "overflow == 0 for opcode SHR",
            is_shr * mul_add_words.overflow(),
        );

        // Constrain divisor_lo == 2^shf0 when shf0 < 128, and
        // divisor_hi == 2^(128 - shf0) otherwise.
        let (divisor_lo, divisor_hi) = divisor.to_word().to_lo_hi();
        cb.condition(1.expr() - divisor_is_zero.expr(), |cb| {
            cb.add_lookup(
                "Pow2 lookup of shf0, divisor_lo and divisor_hi",
                Lookup::Fixed {
                    tag: FixedTableTag::Pow2.expr(),
                    values: [shf0.expr(), divisor_lo.expr(), divisor_hi.expr()],
                },
            );
        });

        let step_state_transition = StepStateTransition {
            rw_counter: Delta(3.expr()),
            program_counter: Delta(1.expr()),
            stack_pointer: Delta(1.expr()),
            gas_left: Delta(-OpcodeId::SHL.constant_gas_cost().expr()),
            ..Default::default()
        };

        let same_context = SameContextGadget::construct(cb, opcode, step_state_transition);

        Self {
            same_context,
            quotient,
            divisor,
            remainder,
            dividend,
            shift,
            shf0,
            mul_add_words,
            shf_lt256,
            divisor_is_zero,
            remainder_is_zero,
            remainder_lt_divisor,
        }
    }

    fn assign_exec_step(
        &self,
        region: &mut CachedRegion<'_, '_, F>,
        offset: usize,
        block: &Block<F>,
        _chunk: &Chunk<F>,
        _: &Transaction,
        _: &Call,
        step: &ExecStep,
    ) -> Result<(), Error> {
        self.same_context.assign_exec_step(region, offset, step)?;
        let [pop1, pop2, push] = [0, 1, 2].map(|idx| block.get_rws(step, idx).stack_value());
        let shf0 = u64::from(pop1.to_le_bytes()[0]);
        let shf_lt256 = pop1
            .to_le_bytes()
            .iter()
            .try_fold(0u64, |acc, val| acc.checked_add(u64::from(*val)))
            .unwrap()
            - shf0;
        let divisor = if shf_lt256 == 0 {
            U256::from(1) << shf0
        } else {
            U256::from(0)
        };

        let (quotient, remainder, dividend) = match step.opcode().unwrap() {
            OpcodeId::SHL => (pop2, U256::from(0), push),
            OpcodeId::SHR => (push, pop2 - push * divisor, pop2),
            _ => unreachable!(),
        };
        self.quotient.assign_u256(region, offset, quotient)?;
        self.divisor.assign_u256(region, offset, divisor)?;
        self.remainder.assign_u256(region, offset, remainder)?;
        self.dividend.assign_u256(region, offset, dividend)?;
        self.shift.assign_u256(region, offset, pop1)?;
        self.shf0
            .assign(region, offset, Value::known(F::from(shf0)))?;
        self.mul_add_words
            .assign(region, offset, [quotient, divisor, remainder, dividend])?;
        self.shf_lt256.assign(region, offset, F::from(shf_lt256))?;
        self.divisor_is_zero
            .assign(region, offset, WordLoHi::from(divisor))?;
        self.remainder_is_zero
            .assign(region, offset, WordLoHi::from(remainder))?;
        self.remainder_lt_divisor
            .assign(region, offset, remainder, divisor)?;
        Ok(())
    }
}

#[cfg(test)]
mod test {
    use crate::{evm_circuit::test::rand_word, test_util::CircuitTestBuilder};
    use eth_types::{bytecode, evm_types::OpcodeId, Word};
    use mock::TestContext;

    fn test_ok(opcode: OpcodeId, pop1: Word, pop2: Word) {
        let bytecode = bytecode! {
            PUSH32(pop1)
            PUSH32(pop2)
            #[start]
            .write_op(opcode)
            STOP
        };

        CircuitTestBuilder::new_from_test_ctx(
            TestContext::<2, 1>::simple_ctx_with_bytecode(bytecode).unwrap(),
        )
        .run();
    }

    #[test]
    fn shl_gadget_tests() {
        test_ok(OpcodeId::SHL, Word::from(0xABCD) << 240, Word::from(8));
        test_ok(OpcodeId::SHL, Word::from(0x1234) << 240, Word::from(7));
        test_ok(OpcodeId::SHL, Word::from(0x8765) << 240, Word::from(17));
        test_ok(OpcodeId::SHL, Word::from(0x4321) << 240, Word::from(0));
        test_ok(OpcodeId::SHL, Word::from(0xFFFF), Word::from(256));
        test_ok(OpcodeId::SHL, Word::from(0x12345), Word::from(256 + 8 + 1));
        let max_word = Word::from_big_endian(&[255_u8; 32]);
        test_ok(OpcodeId::SHL, max_word, Word::from(63));
        test_ok(OpcodeId::SHL, max_word, Word::from(128));
        test_ok(OpcodeId::SHL, max_word, Word::from(129));
        test_ok(OpcodeId::SHL, rand_word(), rand_word());
    }

    #[test]
    fn shr_gadget_tests() {
        test_ok(OpcodeId::SHR, Word::from(0xABCD), Word::from(8));
        test_ok(OpcodeId::SHR, Word::from(0x1234), Word::from(7));
        test_ok(OpcodeId::SHR, Word::from(0x8765), Word::from(17));
        test_ok(OpcodeId::SHR, Word::from(0x4321), Word::from(0));
        test_ok(OpcodeId::SHR, Word::from(0xFFFF), Word::from(256));
        test_ok(OpcodeId::SHR, Word::from(0x12345), Word::from(256 + 8 + 1));
        let max_word = Word::from_big_endian(&[255_u8; 32]);
        test_ok(OpcodeId::SHR, max_word, Word::from(63));
        test_ok(OpcodeId::SHR, max_word, Word::from(128));
        test_ok(OpcodeId::SHR, max_word, Word::from(129));
        test_ok(OpcodeId::SHR, rand_word(), rand_word());
    }
}