use crate::{
evm_circuit::{
execution::ExecutionGadget,
step::ExecutionState,
util::{
common_gadget::{SameContextGadget, SloadGasGadget},
constraint_builder::{
EVMConstraintBuilder, ReversionInfo, StepStateTransition, Transition::Delta,
},
CachedRegion, Cell, StepRws,
},
witness::{Block, Call, Chunk, ExecStep, Transaction},
},
table::CallContextFieldTag,
util::{
word::{WordExpr, WordLoHi, WordLoHiCell},
Expr,
},
};
use eth_types::Field;
use halo2_proofs::{circuit::Value, plonk::Error};
#[derive(Clone, Debug)]
pub(crate) struct SloadGadget<F> {
same_context: SameContextGadget<F>,
tx_id: Cell<F>,
reversion_info: ReversionInfo<F>,
callee_address: WordLoHiCell<F>,
key: WordLoHiCell<F>,
value: WordLoHiCell<F>,
committed_value: WordLoHiCell<F>,
is_warm: Cell<F>,
}
impl<F: Field> ExecutionGadget<F> for SloadGadget<F> {
const NAME: &'static str = "SLOAD";
const EXECUTION_STATE: ExecutionState = ExecutionState::SLOAD;
fn configure(cb: &mut EVMConstraintBuilder<F>) -> Self {
let opcode = cb.query_cell();
let tx_id = cb.call_context(None, CallContextFieldTag::TxId);
let mut reversion_info = cb.reversion_info_read(None);
let callee_address = cb.call_context_read_as_word(None, CallContextFieldTag::CalleeAddress);
let key = cb.query_word_unchecked();
cb.stack_pop(key.to_word());
let value = cb.query_word_unchecked();
let committed_value = cb.query_word_unchecked();
cb.account_storage_read(
callee_address.to_word(),
key.to_word(),
value.to_word(),
tx_id.expr(),
committed_value.to_word(),
);
cb.stack_push(value.to_word());
let is_warm = cb.query_bool();
cb.account_storage_access_list_read(
tx_id.expr(),
callee_address.to_word(),
key.to_word(),
WordLoHi::from_lo_unchecked(is_warm.expr()),
);
cb.account_storage_access_list_write(
tx_id.expr(),
callee_address.to_word(),
key.to_word(),
WordLoHi::from_lo_unchecked(true.expr()),
WordLoHi::from_lo_unchecked(is_warm.expr()),
Some(&mut reversion_info),
);
let gas_cost = SloadGasGadget::construct(cb, is_warm.expr()).expr();
let step_state_transition = StepStateTransition {
rw_counter: Delta(9.expr()),
program_counter: Delta(1.expr()),
reversible_write_counter: Delta(1.expr()),
gas_left: Delta(-gas_cost),
..Default::default()
};
let same_context = SameContextGadget::construct(cb, opcode, step_state_transition);
Self {
same_context,
tx_id,
reversion_info,
callee_address,
key,
value,
committed_value,
is_warm,
}
}
fn assign_exec_step(
&self,
region: &mut CachedRegion<'_, '_, F>,
offset: usize,
block: &Block<F>,
_chunk: &Chunk<F>,
tx: &Transaction,
call: &Call,
step: &ExecStep,
) -> Result<(), Error> {
self.same_context.assign_exec_step(region, offset, step)?;
self.tx_id
.assign(region, offset, Value::known(F::from(tx.id)))?;
self.reversion_info.assign(
region,
offset,
call.rw_counter_end_of_reversion,
call.is_persistent,
)?;
self.callee_address
.assign_h160(region, offset, call.address)?;
let mut rws = StepRws::new(block, step);
rws.offset_add(4);
let key = rws.next().stack_value();
let (_, committed_value) = rws.next().aux_pair();
let value = rws.next().stack_value();
self.key.assign_u256(region, offset, key)?;
self.value.assign_u256(region, offset, value)?;
self.committed_value
.assign_u256(region, offset, committed_value)?;
rws.next();
let (_, is_warm) = rws.next().tx_access_list_value_pair();
self.is_warm
.assign(region, offset, Value::known(F::from(is_warm as u64)))?;
Ok(())
}
}
#[cfg(test)]
mod test {
use crate::{evm_circuit::test::rand_word, test_util::CircuitTestBuilder};
use eth_types::{bytecode, Word};
use mock::{test_ctx::helpers::tx_from_1_to_0, TestContext, MOCK_ACCOUNTS};
fn test_ok(key: Word, value: Word) {
let bytecode_success = bytecode! {
PUSH32(key)
SLOAD
PUSH32(key)
SLOAD
STOP
};
let bytecode_failure = bytecode! {
PUSH32(key)
SLOAD
PUSH32(key)
SLOAD
PUSH32(0)
PUSH32(0)
REVERT
};
for bytecode in [bytecode_success, bytecode_failure] {
let ctx = TestContext::<2, 1>::new(
None,
|accs| {
accs[0]
.address(MOCK_ACCOUNTS[0])
.balance(Word::from(10u64.pow(19)))
.code(bytecode)
.storage(vec![(key, value)].into_iter());
accs[1]
.address(MOCK_ACCOUNTS[1])
.balance(Word::from(10u64.pow(19)));
},
tx_from_1_to_0,
|block, _txs| block,
)
.unwrap();
CircuitTestBuilder::new_from_test_ctx(ctx).run();
}
}
#[test]
fn sload_gadget_simple() {
let key = 0x030201.into();
let value = 0x060504.into();
test_ok(key, value);
}
#[test]
fn sload_gadget_rand() {
let key = rand_word();
let value = rand_word();
test_ok(key, value);
}
}