1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
//! Circuit to verify multiple ECDSA secp256k1 signatures.
// This module uses halo2-ecc's ecdsa chip
// - to prove the correctness of secp signatures
// - to compute the RLC in circuit
// - to perform keccak lookup table
//
// Naming notes:
// - *_be: Big-Endian bytes
// - *_le: Little-Endian bytes
#[cfg(any(test, feature = "test-circuits"))]
mod dev;
mod ecdsa;
#[cfg(test)]
mod test;
mod utils;
use crate::{
evm_circuit::{util::not, EvmCircuit},
keccak_circuit::KeccakCircuit,
sig_circuit::{
ecdsa::ecdsa_verify_no_pubkey_check,
utils::{calc_required_advices, FpChip},
},
table::{KeccakTable, SigTable},
util::{word::WordLoHi, Challenges, Expr, SubCircuit, SubCircuitConfig},
};
use eth_types::{
self,
sign_types::{pk_bytes_le, pk_bytes_swap_endianness, SignData},
Field,
};
use halo2_base::{
gates::{range::RangeConfig, GateInstructions, RangeInstructions},
utils::modulus,
AssignedValue, Context, QuantumCell, SKIP_FIRST_PASS,
};
use halo2_ecc::{
bigint::CRTInteger,
ecc::EccChip,
fields::{
fp::{FpConfig, FpStrategy},
FieldChip,
},
};
pub(crate) use utils::*;
use halo2_proofs::{
circuit::{Layouter, Value},
halo2curves::secp256k1::{Fp, Fq, Secp256k1Affine},
plonk::{Advice, Column, ConstraintSystem, Error, Expression, Selector},
poly::Rotation,
};
use ethers_core::utils::keccak256;
use itertools::Itertools;
use log::error;
use std::{iter, marker::PhantomData};
/// Circuit configuration arguments
pub struct SigCircuitConfigArgs<F: Field> {
/// KeccakTable
pub _keccak_table: KeccakTable,
/// SigTable
pub sig_table: SigTable,
/// Challenges
pub challenges: Challenges<Expression<F>>,
}
/// SignVerify Configuration
#[derive(Debug, Clone)]
pub struct SigCircuitConfig<F>
where
F: Field + halo2_base::utils::ScalarField,
{
/// ECDSA
ecdsa_config: FpChip<F>,
// ecdsa_config: FpConfig<F, Fp>,
/// An advice column to store RLC witnesses
rlc_column: Column<Advice>,
/// selector for keccak lookup table
q_keccak: Selector,
/// Used to lookup pk->pk_hash(addr)
_keccak_table: KeccakTable,
/// The exposed table to be used by tx circuit and ecrecover
sig_table: SigTable,
}
impl<F> SubCircuitConfig<F> for SigCircuitConfig<F>
where
F: Field + halo2_base::utils::ScalarField,
{
type ConfigArgs = SigCircuitConfigArgs<F>;
/// Return a new SigConfig
fn new(
meta: &mut ConstraintSystem<F>,
Self::ConfigArgs {
_keccak_table,
sig_table,
challenges: _,
}: Self::ConfigArgs,
) -> Self {
// need an additional phase 2 column/basic gate to hold the witnesses during RLC
// computations
let num_advice = [calc_required_advices(MAX_NUM_SIG), 1];
let num_lookup_advice = [calc_required_lookup_advices(MAX_NUM_SIG)];
log::info!("configuring ECDSA chip with multiple phases");
let ecdsa_config = FpConfig::configure(
meta,
FpStrategy::Simple,
&num_advice,
&num_lookup_advice,
1,
LOG_TOTAL_NUM_ROWS - 1,
LIMB_BITS,
NUM_LIMBS,
modulus::<Fp>(),
0,
LOG_TOTAL_NUM_ROWS, // maximum k of the chip
);
// we need one phase 2 column to store RLC results
let rlc_column = meta.advice_column_in(halo2_proofs::plonk::SecondPhase);
meta.enable_equality(rlc_column);
meta.enable_equality(sig_table.recovered_addr);
meta.enable_equality(sig_table.sig_r.lo());
meta.enable_equality(sig_table.sig_r.hi());
meta.enable_equality(sig_table.sig_s.lo());
meta.enable_equality(sig_table.sig_s.hi());
meta.enable_equality(sig_table.sig_v);
meta.enable_equality(sig_table.is_valid);
meta.enable_equality(sig_table.msg_hash.lo());
meta.enable_equality(sig_table.msg_hash.hi());
// Ref. spec SignVerifyChip 1. Verify that keccak(pub_key_bytes) = pub_key_hash
// by keccak table lookup, where pub_key_bytes is built from the pub_key
// in the ecdsa_chip.
let q_keccak = meta.complex_selector();
meta.lookup_any("keccak lookup table", |meta| {
// When address is 0, we disable the signature verification by using a dummy pk,
// msg_hash and signature which is not constrained to match msg_hash_rlc nor
// the address.
// Layout:
// | q_keccak | rlc |
// | -------- | --------------- |
// | 1 | is_address_zero |
// | | pk_rlc |
// | | pk_hash_lo |
// | | pk_hash_hi |
let q_keccak = meta.query_selector(q_keccak);
let is_address_zero = meta.query_advice(rlc_column, Rotation::cur());
let is_enable = q_keccak * not::expr(is_address_zero);
let input = [
is_enable.clone(),
is_enable.clone() * meta.query_advice(rlc_column, Rotation(1)),
is_enable.clone() * 64usize.expr(),
is_enable.clone() * meta.query_advice(rlc_column, Rotation(2)),
is_enable * meta.query_advice(rlc_column, Rotation(3)),
];
let table = [
meta.query_advice(_keccak_table.is_enabled, Rotation::cur()),
meta.query_advice(_keccak_table.input_rlc, Rotation::cur()),
meta.query_advice(_keccak_table.input_len, Rotation::cur()),
meta.query_advice(_keccak_table.output.lo(), Rotation::cur()),
meta.query_advice(_keccak_table.output.hi(), Rotation::cur()),
];
input.into_iter().zip(table).collect()
});
Self {
ecdsa_config,
_keccak_table,
sig_table,
q_keccak,
rlc_column,
}
}
}
/// Verify a message hash is signed by the public
/// key corresponding to an Ethereum Address.
#[derive(Clone, Debug, Default)]
pub struct SigCircuit<F: Field> {
/// Max number of verifications
pub max_verif: usize,
/// Without padding
pub signatures: Vec<SignData>,
/// Marker
pub _marker: PhantomData<F>,
}
impl<F: Field + halo2_base::utils::ScalarField> SubCircuit<F> for SigCircuit<F> {
type Config = SigCircuitConfig<F>;
fn new_from_block(block: &crate::witness::Block<F>, chunk: &crate::witness::Chunk<F>) -> Self {
assert!(chunk.fixed_param.max_txs <= MAX_NUM_SIG);
SigCircuit {
max_verif: MAX_NUM_SIG,
signatures: block.get_sign_data(true),
_marker: Default::default(),
}
}
/// Returns number of unusable rows of the SubCircuit, which should be
/// `meta.blinding_factors() + 1`.
fn unusable_rows() -> usize {
[
KeccakCircuit::<F>::unusable_rows(),
EvmCircuit::<F>::unusable_rows(),
// may include additional subcircuits here
]
.into_iter()
.max()
.unwrap()
}
fn synthesize_sub(
&self,
config: &Self::Config,
challenges: &Challenges<Value<F>>,
layouter: &mut impl Layouter<F>,
) -> Result<(), Error> {
config.ecdsa_config.range.load_lookup_table(layouter)?;
self.assign(config, layouter, &self.signatures, challenges)?;
Ok(())
}
// Since sig circuit / halo2-lib use veticle cell assignment,
// so the returned pair is consisted of same values
fn min_num_rows_block(
block: &crate::witness::Block<F>,
chunk: &crate::witness::Chunk<F>,
) -> (usize, usize) {
let row_num = if chunk.fixed_param.max_vertical_circuit_rows == 0 {
Self::min_num_rows()
} else {
chunk.fixed_param.max_vertical_circuit_rows
};
let ecdsa_verif_count =
block.txs.len() + block.precompile_events.get_ecrecover_events().len();
// Reserve one ecdsa verification for padding tx such that the bad case in which some tx
// calls MAX_NUM_SIG - 1 ecrecover precompile won't happen. If that case happens, the sig
// circuit won't have more space for the padding tx's ECDSA verification. Then the
// prover won't be able to produce any valid proof.
let max_num_verif = MAX_NUM_SIG - 1;
// Instead of showing actual minimum row usage,
// halo2-lib based circuits use min_row_num to represent a percentage of total-used capacity
// This functionality allows l2geth to decide if additional ops can be added.
let min_row_num = (row_num / max_num_verif) * ecdsa_verif_count;
(min_row_num, row_num)
}
}
impl<F: Field + halo2_base::utils::ScalarField> SigCircuit<F> {
/// Return a new SigCircuit
pub fn new(max_verif: usize) -> Self {
Self {
max_verif,
signatures: Vec::new(),
_marker: PhantomData,
}
}
/// Return the minimum number of rows required to prove an input of a
/// particular size.
pub fn min_num_rows() -> usize {
// SigCircuit can't determine usable rows independently.
// Instead, the blinding area is determined by other advise columns with most counts of
// rotation queries. This value is typically determined by either the Keccak or EVM
// circuit.
// the cells are allocated vertically, i.e., given a TOTAL_NUM_ROWS * NUM_ADVICE
// matrix, the allocator will try to use all the cells in the first column, then
// the second column, etc.
let max_blinding_factor = Self::unusable_rows() - 1;
// same formula as halo2-lib's FlexGate
(1 << LOG_TOTAL_NUM_ROWS) - (max_blinding_factor + 3)
}
}
impl<F: Field + halo2_base::utils::ScalarField> SigCircuit<F> {
/// Verifies the ecdsa relationship. I.e., prove that the signature
/// is (in)valid or not under the given public key and the message hash in
/// the circuit. Does not enforce the signature is valid.
///
/// Returns the cells for
/// - public keys
/// - message hashes
/// - a boolean whether the signature is correct or not
///
/// WARNING: this circuit does not enforce the returned value to be true
/// make sure the caller checks this result!
fn assign_ecdsa(
&self,
ctx: &mut Context<F>,
ecdsa_chip: &FpChip<F>,
sign_data: &SignData,
) -> Result<AssignedECDSA<F, FpChip<F>>, Error> {
let gate = ecdsa_chip.gate();
let zero = gate.load_zero(ctx);
let SignData {
signature,
pk,
msg: _,
msg_hash,
} = sign_data;
let (sig_r, sig_s, v) = signature;
// build ecc chip from Fp chip
let ecc_chip = EccChip::<F, FpChip<F>>::construct(ecdsa_chip.clone());
let pk_assigned = ecc_chip.load_private(ctx, (Value::known(pk.x), Value::known(pk.y)));
let pk_is_valid = ecc_chip.is_on_curve_or_infinity::<Secp256k1Affine>(ctx, &pk_assigned);
gate.assert_is_const(ctx, &pk_is_valid, F::ONE);
// build Fq chip from Fp chip
let fq_chip = FqChip::construct(ecdsa_chip.range.clone(), 88, 3, modulus::<Fq>());
let integer_r =
fq_chip.load_private(ctx, FqChip::<F>::fe_to_witness(&Value::known(*sig_r)));
let integer_s =
fq_chip.load_private(ctx, FqChip::<F>::fe_to_witness(&Value::known(*sig_s)));
let msg_hash =
fq_chip.load_private(ctx, FqChip::<F>::fe_to_witness(&Value::known(*msg_hash)));
// returns the verification result of ecdsa signature
//
// WARNING: this circuit does not enforce the returned value to be true
// make sure the caller checks this result!
let (sig_is_valid, pk_is_zero, y_coord, y_coord_is_zero) =
ecdsa_verify_no_pubkey_check::<F, Fp, Fq, Secp256k1Affine>(
&ecc_chip.field_chip,
ctx,
&pk_assigned,
&integer_r,
&integer_s,
&msg_hash,
4,
4,
);
// =======================================
// constrains v == y.is_oddness()
// =======================================
assert!(*v == 0 || *v == 1, "v is not boolean");
// we constrain:
// - v + 2*tmp = y where y is already range checked (88 bits)
// - v is a binary
// - tmp is also < 88 bits (this is crucial otherwise tmp may wrap around and break
// soundness)
let assigned_y_is_odd = gate.load_witness(ctx, Value::known(F::from(*v as u64)));
gate.assert_bit(ctx, assigned_y_is_odd);
// the last 88 bits of y
let assigned_y_limb = &y_coord.limbs()[0];
let mut y_value = F::ZERO;
assigned_y_limb.value().map(|&x| y_value = x);
// y_tmp = (y_value - y_last_bit)/2
let y_tmp = (y_value - F::from(*v as u64)) * F::TWO_INV;
let assigned_y_tmp = gate.load_witness(ctx, Value::known(y_tmp));
// y_tmp_double = (y_value - y_last_bit)
let y_tmp_double = gate.mul(
ctx,
QuantumCell::Existing(assigned_y_tmp),
QuantumCell::Constant(F::from(2)),
);
let y_rec = gate.add(
ctx,
QuantumCell::Existing(y_tmp_double),
QuantumCell::Existing(assigned_y_is_odd),
);
let y_is_ok = gate.is_equal(
ctx,
QuantumCell::Existing(*assigned_y_limb),
QuantumCell::Existing(y_rec),
);
// last step we want to constrain assigned_y_tmp is 87 bits
let assigned_y_tmp = gate.select(
ctx,
QuantumCell::Existing(zero),
QuantumCell::Existing(assigned_y_tmp),
QuantumCell::Existing(y_coord_is_zero),
);
ecc_chip
.field_chip
.range
.range_check(ctx, &assigned_y_tmp, 87);
let y_coord_not_zero = gate.not(ctx, QuantumCell::Existing(y_coord_is_zero));
let sig_is_valid = gate.and_many(
ctx,
vec![
QuantumCell::Existing(sig_is_valid),
QuantumCell::Existing(y_is_ok),
QuantumCell::Existing(y_coord_not_zero),
],
);
Ok(AssignedECDSA {
_pk: pk_assigned,
pk_is_zero,
msg_hash,
integer_r,
integer_s,
v: assigned_y_is_odd,
sig_is_valid,
})
}
fn enable_keccak_lookup(
&self,
config: &SigCircuitConfig<F>,
ctx: &mut Context<F>,
offset: usize,
is_address_zero: &AssignedValue<F>,
pk_rlc: &AssignedValue<F>,
pk_hash: &WordLoHi<AssignedValue<F>>,
) -> Result<(), Error> {
log::trace!("keccak lookup");
// Layout:
// | q_keccak | rlc |
// | -------- | --------------- |
// | 1 | is_address_zero |
// | | pk_rlc |
// | | pk_hash_lo |
// | | pk_hash_hi |
config.q_keccak.enable(&mut ctx.region, offset)?;
// is_address_zero
let tmp_cell = ctx.region.assign_advice(
|| "is_address_zero",
config.rlc_column,
offset,
|| is_address_zero.value,
)?;
ctx.region
.constrain_equal(is_address_zero.cell, tmp_cell.cell())?;
// pk_rlc
let tmp_cell = ctx.region.assign_advice(
|| "pk_rlc",
config.rlc_column,
offset + 1,
|| pk_rlc.value,
)?;
ctx.region.constrain_equal(pk_rlc.cell, tmp_cell.cell())?;
// pk_hash
let pk_cell_lo = ctx.region.assign_advice(
|| "pk_hash_lo",
config.rlc_column,
offset + 2,
|| pk_hash.lo().value,
)?;
ctx.region
.constrain_equal(pk_hash.lo().cell, pk_cell_lo.cell())?;
let pk_cell_hi = ctx.region.assign_advice(
|| "pk_hash_hi",
config.rlc_column,
offset + 3,
|| pk_hash.hi().value,
)?;
ctx.region
.constrain_equal(pk_hash.hi().cell, pk_cell_hi.cell())?;
log::trace!("finished keccak lookup");
Ok(())
}
/// Input the signature data,
/// Output the cells for byte decomposition of the keys and messages
fn sign_data_decomposition(
&self,
ctx: &mut Context<F>,
ecdsa_chip: &FpChip<F>,
sign_data: &SignData,
assigned_data: &AssignedECDSA<F, FpChip<F>>,
) -> Result<SignDataDecomposed<F>, Error> {
// build ecc chip from Fp chip
let ecc_chip = EccChip::<F, FpChip<F>>::construct(ecdsa_chip.clone());
let zero = ecdsa_chip.range.gate.load_zero(ctx);
// ================================================
// step 0. powers of aux parameters
// ================================================
let word_lo_hi_powers =
iter::successors(Some(F::ONE), |coeff| Some(F::from(256) * coeff)).take(32);
let powers_of_256_cells = word_lo_hi_powers
.map(|x| QuantumCell::Constant(x))
.collect_vec();
// ================================================
// pk hash cells
// ================================================
let pk_le = pk_bytes_le(&sign_data.pk);
let pk_be = pk_bytes_swap_endianness(&pk_le);
let pk_hash = keccak256(pk_be).map(|byte| Value::known(F::from(byte as u64)));
log::trace!("pk hash {:0x?}", pk_hash);
let pk_hash_cells = pk_hash
.iter()
.map(|&x| QuantumCell::Witness(x))
.rev()
.collect_vec();
// address is the random linear combination of the public key
// it is fine to use a phase 1 gate here
let address = ecdsa_chip.range.gate.inner_product(
ctx,
powers_of_256_cells[..20].to_vec(),
pk_hash_cells[..20].to_vec(),
);
let address = ecdsa_chip.range.gate.select(
ctx,
QuantumCell::Existing(zero),
QuantumCell::Existing(address),
QuantumCell::Existing(assigned_data.pk_is_zero),
);
let is_address_zero = ecdsa_chip.range.gate.is_equal(
ctx,
QuantumCell::Existing(address),
QuantumCell::Existing(zero),
);
log::trace!("address: {:?}", address.value());
// ================================================
// message hash cells
// ================================================
let assert_crt = |ctx: &mut Context<F>,
bytes: [u8; 32],
crt_integer: &CRTInteger<F>|
-> Result<_, Error> {
let byte_cells: Vec<QuantumCell<F>> = bytes
.iter()
.map(|&x| QuantumCell::Witness(Value::known(F::from(x as u64))))
.collect_vec();
self.assert_crt_int_byte_repr(
ctx,
&ecdsa_chip.range,
crt_integer,
&byte_cells,
&powers_of_256_cells,
)?;
Ok(byte_cells)
};
// assert the assigned_msg_hash_le is the right decomposition of msg_hash
// msg_hash is an overflowing integer with 3 limbs, of sizes 88, 88, and 80
let assigned_msg_hash_le =
assert_crt(ctx, sign_data.msg_hash.to_bytes(), &assigned_data.msg_hash)?;
// ================================================
// pk cells
// ================================================
let pk_x_le = sign_data
.pk
.x
.to_bytes()
.iter()
.map(|&x| QuantumCell::Witness(Value::known(F::from_u128(x as u128))))
.collect_vec();
let pk_y_le = sign_data
.pk
.y
.to_bytes()
.iter()
.map(|&y| QuantumCell::Witness(Value::known(F::from_u128(y as u128))))
.collect_vec();
let pk_assigned = ecc_chip.load_private(
ctx,
(Value::known(sign_data.pk.x), Value::known(sign_data.pk.y)),
);
self.assert_crt_int_byte_repr(
ctx,
&ecdsa_chip.range,
&pk_assigned.x,
&pk_x_le,
&powers_of_256_cells,
)?;
self.assert_crt_int_byte_repr(
ctx,
&ecdsa_chip.range,
&pk_assigned.y,
&pk_y_le,
&powers_of_256_cells,
)?;
let assigned_pk_le_selected = [pk_y_le, pk_x_le].concat();
log::trace!("finished data decomposition");
let r_cells = assert_crt(
ctx,
sign_data.signature.0.to_bytes(),
&assigned_data.integer_r,
)?;
let s_cells = assert_crt(
ctx,
sign_data.signature.1.to_bytes(),
&assigned_data.integer_s,
)?;
Ok(SignDataDecomposed {
pk_hash_cells,
msg_hash_cells: assigned_msg_hash_le,
pk_cells: assigned_pk_le_selected,
address,
is_address_zero,
r_cells,
s_cells,
})
}
#[allow(clippy::too_many_arguments)]
fn assign_sig_verify(
&self,
ctx: &mut Context<F>,
rlc_chip: &RangeConfig<F>,
sign_data_decomposed: &SignDataDecomposed<F>,
challenges: &Challenges<Value<F>>,
assigned_ecdsa: &AssignedECDSA<F, FpChip<F>>,
) -> Result<([AssignedValue<F>; 4], AssignedSignatureVerify<F>), Error> {
// ================================================
// step 0. powers of aux parameters
// ================================================
let word_lo_hi_powers = iter::successors(Some(Value::known(F::ONE)), |coeff| {
Some(Value::known(F::from(256)) * coeff)
})
.take(16)
.map(|x| QuantumCell::Witness(x))
.collect_vec();
let keccak_challenge_powers = iter::successors(Some(Value::known(F::ONE)), |coeff| {
Some(challenges.keccak_input() * coeff)
})
.take(64)
.map(|x| QuantumCell::Witness(x))
.collect_vec();
// ================================================
// step 1 message hash
// ================================================
// Ref. spec SignVerifyChip 3. Verify that the signed message in the ecdsa_chip
// corresponds to msg_hash
let msg_hash_cells = {
let msg_hash_lo_cell_bytes = &sign_data_decomposed.msg_hash_cells[..16];
let msg_hash_hi_cell_bytes = &sign_data_decomposed.msg_hash_cells[16..];
let msg_hash_cell_lo = rlc_chip.gate.inner_product(
ctx,
msg_hash_lo_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
let msg_hash_cell_hi = rlc_chip.gate.inner_product(
ctx,
msg_hash_hi_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
WordLoHi::new([msg_hash_cell_lo, msg_hash_cell_hi])
};
log::trace!(
"assigned msg hash: ({:?}, {:?})",
msg_hash_cells.lo().value(),
msg_hash_cells.hi().value()
);
// ================================================
// step 2 random linear combination of pk
// ================================================
let pk_rlc = rlc_chip.gate.inner_product(
ctx,
sign_data_decomposed.pk_cells.clone(),
keccak_challenge_powers,
);
log::trace!("pk rlc: {:?}", pk_rlc.value());
// ================================================
// step 3 pk_hash
// ================================================
let pk_hash_cells = {
let pk_hash_lo_cell_bytes = &sign_data_decomposed.pk_hash_cells[..16];
let pk_hash_hi_cell_bytes = &sign_data_decomposed.pk_hash_cells[16..];
let pk_hash_cell_lo = rlc_chip.gate.inner_product(
ctx,
pk_hash_lo_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
let pk_hash_cell_hi = rlc_chip.gate.inner_product(
ctx,
pk_hash_hi_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
WordLoHi::new([pk_hash_cell_lo, pk_hash_cell_hi])
};
// step 4: r,s
let r_cells = {
let r_lo_cell_bytes = &sign_data_decomposed.r_cells[..16];
let r_hi_cell_bytes = &sign_data_decomposed.r_cells[16..];
let r_cell_lo = rlc_chip.gate.inner_product(
ctx,
r_lo_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
let r_cell_hi = rlc_chip.gate.inner_product(
ctx,
r_hi_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
WordLoHi::new([r_cell_lo, r_cell_hi])
};
let s_cells = {
let s_lo_cell_bytes = &sign_data_decomposed.s_cells[..16];
let s_hi_cell_bytes = &sign_data_decomposed.s_cells[16..];
let s_cell_lo = rlc_chip.gate.inner_product(
ctx,
s_lo_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers.clone(),
);
let s_cell_hi = rlc_chip.gate.inner_product(
ctx,
s_hi_cell_bytes.iter().cloned().collect_vec(),
word_lo_hi_powers,
);
WordLoHi::new([s_cell_lo, s_cell_hi])
};
log::trace!(
"pk hash halo2ecc: ({:?}, {:?})",
pk_hash_cells.lo().value(),
pk_hash_cells.lo().value()
);
log::trace!("finished sign verify");
let to_be_keccak_checked = [
sign_data_decomposed.is_address_zero,
pk_rlc,
pk_hash_cells.lo(),
pk_hash_cells.hi(),
];
let assigned_sig_verif = AssignedSignatureVerify {
address: sign_data_decomposed.address,
// msg_len: sign_data.msg.len(),
// msg_rlc: challenges
// .keccak_input()
// .map(|r| rlc::value(sign_data.msg.iter().rev(), r)),
msg_hash: msg_hash_cells,
sig_is_valid: assigned_ecdsa.sig_is_valid,
r: r_cells,
s: s_cells,
v: assigned_ecdsa.v,
};
Ok((to_be_keccak_checked, assigned_sig_verif))
}
/// Assign witness data to the sig circuit.
pub(crate) fn assign(
&self,
config: &SigCircuitConfig<F>,
layouter: &mut impl Layouter<F>,
signatures: &[SignData],
challenges: &Challenges<Value<F>>,
) -> Result<Vec<AssignedSignatureVerify<F>>, Error> {
if signatures.len() > self.max_verif {
error!(
"signatures.len() = {} > max_verif = {}",
signatures.len(),
self.max_verif
);
return Err(Error::Synthesis);
}
let mut first_pass = SKIP_FIRST_PASS;
let ecdsa_chip = &config.ecdsa_config;
let assigned_sig_verifs = layouter.assign_region(
|| "ecdsa chip verification",
|region| {
if first_pass {
first_pass = false;
return Ok(vec![]);
}
let mut ctx = ecdsa_chip.new_context(region);
// ================================================
// step 1: assert the signature is valid in circuit
// ================================================
let assigned_ecdsas = signatures
.iter()
.chain(std::iter::repeat(&SignData::default()))
.take(self.max_verif)
.map(|sign_data| self.assign_ecdsa(&mut ctx, ecdsa_chip, sign_data))
.collect::<Result<Vec<AssignedECDSA<F, FpChip<F>>>, Error>>()?;
// ================================================
// step 2: decompose the keys and messages
// ================================================
let sign_data_decomposed = signatures
.iter()
.chain(std::iter::repeat(&SignData::default()))
.take(self.max_verif)
.zip_eq(assigned_ecdsas.iter())
.map(|(sign_data, assigned_ecdsa)| {
self.sign_data_decomposition(
&mut ctx,
ecdsa_chip,
sign_data,
assigned_ecdsa,
)
})
.collect::<Result<Vec<SignDataDecomposed<F>>, Error>>()?;
// IMPORTANT: Move to Phase2 before RLC
log::info!("before proceeding to the next phase");
// finalize the current lookup table before moving to next phase
ecdsa_chip.finalize(&mut ctx);
ctx.print_stats(&["ECDSA context"]);
ctx.next_phase();
// ================================================
// step 3: compute RLC of keys and messages
// ================================================
let (assigned_keccak_values, assigned_sig_values): (
Vec<[AssignedValue<F>; 4]>,
Vec<AssignedSignatureVerify<F>>,
) = signatures
.iter()
.chain(std::iter::repeat(&SignData::default()))
.take(self.max_verif)
.zip_eq(assigned_ecdsas.iter())
.zip_eq(sign_data_decomposed.iter())
.map(|((_, assigned_ecdsa), sign_data_decomp)| {
self.assign_sig_verify(
&mut ctx,
&ecdsa_chip.range,
sign_data_decomp,
challenges,
assigned_ecdsa,
)
})
.collect::<Result<
Vec<([AssignedValue<F>; 4], AssignedSignatureVerify<F>)>,
Error,
>>()?
.into_iter()
.unzip();
// ================================================
// step 4: deferred keccak checks
// ================================================
for (i, [is_address_zero, pk_rlc, pk_hash_lo, pk_hash_hi]) in
assigned_keccak_values.iter().enumerate()
{
let offset = i * 4;
self.enable_keccak_lookup(
config,
&mut ctx,
offset,
is_address_zero,
pk_rlc,
&WordLoHi::new([*pk_hash_lo, *pk_hash_hi]),
)?;
}
// IMPORTANT: this assigns all constants to the fixed columns
// IMPORTANT: this copies cells to the lookup advice column to perform range
// check lookups
// This is not optional.
let lookup_cells = ecdsa_chip.finalize(&mut ctx);
log::info!("total number of lookup cells: {}", lookup_cells);
ctx.print_stats(&["ECDSA context"]);
Ok(assigned_sig_values)
},
)?;
layouter.assign_region(
|| "expose sig table",
|mut region| {
// step 5: export as a lookup table
for (idx, assigned_sig_verif) in assigned_sig_verifs.iter().enumerate() {
region.assign_fixed(
|| "assign sig_table selector",
config.sig_table.q_enable,
idx,
|| Value::known(F::ONE),
)?;
assigned_sig_verif
.v
.copy_advice(&mut region, config.sig_table.sig_v, idx);
assigned_sig_verif.r.lo().copy_advice(
&mut region,
config.sig_table.sig_r.lo(),
idx,
);
assigned_sig_verif.r.hi().copy_advice(
&mut region,
config.sig_table.sig_r.hi(),
idx,
);
assigned_sig_verif.s.lo().copy_advice(
&mut region,
config.sig_table.sig_s.lo(),
idx,
);
assigned_sig_verif.s.hi().copy_advice(
&mut region,
config.sig_table.sig_s.hi(),
idx,
);
assigned_sig_verif.address.copy_advice(
&mut region,
config.sig_table.recovered_addr,
idx,
);
assigned_sig_verif.sig_is_valid.copy_advice(
&mut region,
config.sig_table.is_valid,
idx,
);
assigned_sig_verif.msg_hash.lo().copy_advice(
&mut region,
config.sig_table.msg_hash.lo(),
idx,
);
assigned_sig_verif.msg_hash.hi().copy_advice(
&mut region,
config.sig_table.msg_hash.hi(),
idx,
);
}
Ok(())
},
)?;
Ok(assigned_sig_verifs)
}
/// Assert an CRTInteger's byte representation is correct.
/// inputs
/// - crt_int with 3 limbs [88, 88, 80]
/// - byte representation of the integer
/// - a sequence of [1, 2^8, 2^16, ...]
/// - a overriding flag that sets output to 0 if set
fn assert_crt_int_byte_repr(
&self,
ctx: &mut Context<F>,
range_chip: &RangeConfig<F>,
crt_int: &CRTInteger<F>,
byte_repr: &[QuantumCell<F>],
word_lo_hi_powers: &[QuantumCell<F>],
) -> Result<(), Error> {
// length of byte representation is 32
assert_eq!(byte_repr.len(), 32);
// need to support decomposition of up to 88 bits
assert!(word_lo_hi_powers.len() >= 11);
let flex_gate_chip = &range_chip.gate;
// apply the overriding flag
let limb1_value = crt_int.truncation.limbs[0];
let limb2_value = crt_int.truncation.limbs[1];
let limb3_value = crt_int.truncation.limbs[2];
// assert the byte_repr is the right decomposition of overflow_int
// overflow_int is an overflowing integer with 3 limbs, of sizes 88, 88, and 80
// we reconstruct the three limbs from the bytes repr, and
// then enforce equality with the CRT integer
let limb1_recover = flex_gate_chip.inner_product(
ctx,
byte_repr[0..11].to_vec(),
word_lo_hi_powers[0..11].to_vec(),
);
let limb2_recover = flex_gate_chip.inner_product(
ctx,
byte_repr[11..22].to_vec(),
word_lo_hi_powers[0..11].to_vec(),
);
let limb3_recover = flex_gate_chip.inner_product(
ctx,
byte_repr[22..].to_vec(),
word_lo_hi_powers[0..10].to_vec(),
);
flex_gate_chip.assert_equal(
ctx,
QuantumCell::Existing(limb1_value),
QuantumCell::Existing(limb1_recover),
);
flex_gate_chip.assert_equal(
ctx,
QuantumCell::Existing(limb2_value),
QuantumCell::Existing(limb2_recover),
);
flex_gate_chip.assert_equal(
ctx,
QuantumCell::Existing(limb3_value),
QuantumCell::Existing(limb3_recover),
);
log::trace!(
"limb 1 \ninput {:?}\nreconstructed {:?}",
limb1_value.value(),
limb1_recover.value()
);
log::trace!(
"limb 2 \ninput {:?}\nreconstructed {:?}",
limb2_value.value(),
limb2_recover.value()
);
log::trace!(
"limb 3 \ninput {:?}\nreconstructed {:?}",
limb3_value.value(),
limb3_recover.value()
);
Ok(())
}
}