1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
use crate::witness::Chunk;
use super::*;
use gadgets::binary_number::AsBits;
// The row also includes the 3 column bits from the tag
type CopyTableRow<F> = [(Value<F>, &'static str); 12];
type CopyCircuitRow<F> = [(Value<F>, &'static str); 5];
/// Copy Table, used to verify copies of byte chunks between Memory, Bytecode,
/// TxLogs and TxCallData.
#[derive(Clone, Copy, Debug)]
pub struct CopyTable {
/// Whether the row is the first read-write pair for a copy event.
pub is_first: Column<Advice>,
/// The relevant ID for the read-write row, represented as a random linear
/// combination. The ID may be one of the below:
/// 1. Call ID/Caller ID for CopyDataType::Memory
/// 2. The hi/lo limbs of bytecode hash for CopyDataType::Bytecode
/// 3. Transaction ID for CopyDataType::TxCalldata, CopyDataType::TxLog
pub id: WordLoHi<Column<Advice>>,
/// The source/destination address for this copy step. Can be memory
/// address, byte index in the bytecode, tx call data, and tx log data.
pub addr: Column<Advice>,
/// The end of the source buffer for the copy event. Any data read from an
/// address greater than or equal to this value will be 0.
pub src_addr_end: Column<Advice>,
/// The number of bytes left to be copied.
pub bytes_left: Column<Advice>,
/// An accumulator value in the RLC representation. This is used for
/// specific purposes, for instance, when `tag == CopyDataType::RlcAcc`.
/// Having an additional column for the `rlc_acc` simplifies the lookup
/// to copy table.
pub rlc_acc: Column<Advice>,
/// The associated read-write counter for this row.
pub rw_counter: Column<Advice>,
/// Decrementing counter denoting reverse read-write counter.
pub rwc_inc_left: Column<Advice>,
/// Selector for the tag BinaryNumberChip
pub q_enable: Column<Fixed>,
// We use the `BinaryNumberBits` instead of `BinaryNumberChip` in order to construct the table
// without attaching any constraints.
/// Binary chip to constrain the copy table conditionally depending on the
/// current row's tag, whether it is Bytecode, Memory, TxCalldata or
/// TxLog.
pub tag: BinaryNumberBits<3>,
}
impl CopyTable {
/// Construct a new CopyTable
pub fn construct<F: Field>(meta: &mut ConstraintSystem<F>, q_enable: Column<Fixed>) -> Self {
Self {
is_first: meta.advice_column(),
id: WordLoHi::new([meta.advice_column(), meta.advice_column()]),
q_enable,
tag: BinaryNumberBits::construct(meta),
addr: meta.advice_column(),
src_addr_end: meta.advice_column(),
bytes_left: meta.advice_column(),
rlc_acc: meta.advice_column_in(SecondPhase),
rw_counter: meta.advice_column(),
rwc_inc_left: meta.advice_column(),
}
}
/// Generate the copy table and copy circuit assignments from a copy event.
pub fn assignments<F: Field>(
copy_event: &CopyEvent,
challenges: Challenges<Value<F>>,
) -> Vec<(CopyDataType, CopyTableRow<F>, CopyCircuitRow<F>)> {
let mut assignments = Vec::new();
// rlc_acc
let rlc_acc = {
let values = copy_event
.bytes
.iter()
.map(|(value, _)| *value)
.collect::<Vec<u8>>();
challenges
.keccak_input()
.map(|keccak_input| rlc::value(values.iter().rev(), keccak_input))
};
let mut value_acc = Value::known(F::ZERO);
for (step_idx, (is_read_step, copy_step)) in copy_event
.bytes
.iter()
.flat_map(|(value, is_code)| {
let read_step = CopyStep {
value: *value,
is_code: if copy_event.src_type == CopyDataType::Bytecode {
Some(*is_code)
} else {
None
},
};
let write_step = CopyStep {
value: *value,
is_code: if copy_event.dst_type == CopyDataType::Bytecode {
Some(*is_code)
} else {
None
},
};
once((true, read_step)).chain(once((false, write_step)))
})
.enumerate()
{
// is_first
let is_first = Value::known(if step_idx == 0 { F::ONE } else { F::ZERO });
// is last
let is_last = if step_idx == copy_event.bytes.len() * 2 - 1 {
Value::known(F::ONE)
} else {
Value::known(F::ZERO)
};
// id
let id = if is_read_step {
number_or_hash_to_word(©_event.src_id)
} else {
number_or_hash_to_word(©_event.dst_id)
};
// tag binary number chip
let tag = if is_read_step {
copy_event.src_type
} else {
copy_event.dst_type
};
// addr
let copy_step_addr: u64 =
if is_read_step {
copy_event.src_addr
} else {
copy_event.dst_addr
} + (u64::try_from(step_idx).unwrap() - if is_read_step { 0 } else { 1 }) / 2u64;
let addr = if tag == CopyDataType::TxLog {
Value::known(
build_tx_log_address(
copy_step_addr,
TxLogFieldTag::Data,
copy_event.log_id.unwrap(),
)
.to_scalar()
.unwrap(),
)
} else {
Value::known(F::from(copy_step_addr))
};
// bytes_left
let bytes_left = u64::try_from(copy_event.bytes.len() * 2 - step_idx).unwrap() / 2;
// value
let value = Value::known(F::from(copy_step.value as u64));
// value_acc
if is_read_step {
value_acc = value_acc * challenges.keccak_input() + value;
}
// is_pad
let is_pad = Value::known(F::from(
(is_read_step && copy_step_addr >= copy_event.src_addr_end) as u64,
));
// is_code
let is_code = Value::known(copy_step.is_code.map_or(F::ZERO, |v| F::from(v as u64)));
let tag_bits: [_; 3] = tag
.as_bits()
.map(|b| (Value::known(F::from(b as u64)), "tag_bit"));
let copy_table_row = [
(is_first, "is_first"),
(id.lo(), "id_lo"),
(id.hi(), "id_hi"),
(addr, "addr"),
(
Value::known(F::from(copy_event.src_addr_end)),
"src_addr_end",
),
(Value::known(F::from(bytes_left)), "bytes_left"),
(
match (copy_event.src_type, copy_event.dst_type) {
(CopyDataType::Memory, CopyDataType::Bytecode) => rlc_acc,
(_, CopyDataType::RlcAcc) => rlc_acc,
(CopyDataType::RlcAcc, _) => rlc_acc,
_ => Value::known(F::ZERO),
},
"rlc_acc",
),
(
Value::known(F::from(copy_event.rw_counter(step_idx))),
"rw_counter",
),
(
Value::known(F::from(copy_event.rw_counter_increase_left(step_idx))),
"rwc_inc_left",
),
tag_bits[0],
tag_bits[1],
tag_bits[2],
];
assignments.push((
tag,
copy_table_row,
[
(is_last, "is_last"),
(value, "value"),
(value_acc, "value_acc"),
(is_pad, "is_pad"),
(is_code, "is_code"),
],
));
}
assignments
}
/// Assign the `CopyTable` from a `Block`.
pub fn load<F: Field>(
&self,
layouter: &mut impl Layouter<F>,
block: &Block<F>,
chunk: &Chunk<F>,
challenges: &Challenges<Value<F>>,
) -> Result<(), Error> {
layouter.assign_region(
|| "copy table",
|mut region| {
let mut offset = 0;
for column in <CopyTable as LookupTable<F>>::advice_columns(self) {
region.assign_advice(
|| "copy table all-zero row",
column,
offset,
|| Value::known(F::ZERO),
)?;
}
offset += 1;
let copy_table_columns = <CopyTable as LookupTable<F>>::advice_columns(self);
for copy_event in block.copy_events.iter() {
for (_, row, _) in Self::assignments(copy_event, *challenges) {
for (&column, (value, label)) in copy_table_columns.iter().zip_eq(row) {
region.assign_advice(
|| format!("{} at row: {}", label, offset),
column,
offset,
|| value,
)?;
}
offset += 1;
}
}
// Enable selector at all rows
let max_copy_rows = chunk.fixed_param.max_copy_rows;
for offset in 0..max_copy_rows {
region.assign_fixed(
|| "q_enable",
self.q_enable,
offset,
|| Value::known(F::ONE),
)?;
}
Ok(())
},
)
}
}
impl<F: Field> LookupTable<F> for CopyTable {
fn columns(&self) -> Vec<Column<Any>> {
let mut columns = vec![
self.is_first.into(),
self.id.lo().into(),
self.id.hi().into(),
self.addr.into(),
self.src_addr_end.into(),
self.bytes_left.into(),
self.rlc_acc.into(),
self.rw_counter.into(),
self.rwc_inc_left.into(),
];
columns.extend(self.tag.iter().map(|c| Into::<Column<Any>>::into(*c)));
columns
}
fn annotations(&self) -> Vec<String> {
let mut names = vec![
String::from("is_first"),
String::from("id_lo"),
String::from("id_hi"),
String::from("addr"),
String::from("src_addr_end"),
String::from("bytes_left"),
String::from("rlc_acc"),
String::from("rw_counter"),
String::from("rwc_inc_left"),
];
names.extend((0..self.tag.len()).map(|i| format!("tag_bit{i}")));
names
}
fn table_exprs(&self, meta: &mut VirtualCells<F>) -> Vec<Expression<F>> {
vec![
meta.query_advice(self.is_first, Rotation::cur()),
meta.query_advice(self.id.lo(), Rotation::cur()), // src_id
meta.query_advice(self.id.hi(), Rotation::cur()), // src_id
self.tag.value(Rotation::cur())(meta), // src_tag
meta.query_advice(self.id.lo(), Rotation::next()), // dst_id
meta.query_advice(self.id.hi(), Rotation::next()), // dst_id
self.tag.value(Rotation::next())(meta), // dst_tag
meta.query_advice(self.addr, Rotation::cur()), // src_addr
meta.query_advice(self.src_addr_end, Rotation::cur()), // src_addr_end
meta.query_advice(self.addr, Rotation::next()), // dst_addr
meta.query_advice(self.bytes_left, Rotation::cur()), // length
meta.query_advice(self.rlc_acc, Rotation::cur()), // rlc_acc
meta.query_advice(self.rw_counter, Rotation::cur()), // rw_counter
meta.query_advice(self.rwc_inc_left, Rotation::cur()), // rwc_inc_left
]
}
}